
www.manaraa.com

Filtering Algorithms and Implementation for Very FastPublish/Subs
ribe SystemsFrançoise Fabret Arno Ja
obsen François Llirbat João Pereira Ken RossDennis ShashaAbstra
tPublish/Subs
ribe is the paradigm in whi
h users express long-term interests (�subs
riptions�) and some externalagent (perhaps other users) �publishes� events (e.g., o�ers). The job of Publish/Subs
ribe software is to send eventsto the owners of subs
riptions satis�ed by those events. For example, a user subs
ription may
onsist of an interestin an airplane of a
ertain type, not to ex
eed a
ertain pri
e. A published event may
onsist of an o�er of an airplanewith
ertain properties in
luding pri
e. A subs
ription
losely resembles a trigger in that it is a long-lived
onditionalquery asso
iated with an a
tion (usually, informing the subs
riber). However, it is less general than a trigger sonovel data stru
tures and implementations may enable the
reation of s
alable, high performan
e publish-subs
ribesystems. This paper des
ribes an attempt at the
onstru
tion of su
h algorithms and its implementation. Usinga
ombination of data stru
tures, appli
ation-spe
i�

a
hing poli
ies, and appli
ation-spe
i�
 query pro
essingour system
an handle 600 events per se
ond on 6 million subs
riptions
onsisting of
onjun
tions of (attribute,
omparison operator, value) predi
ates.1 Motivation and Des
ription of the ProblemMu
h of human information will be on the Web in ten years. The Web is parti
ularly well-suited to
hanging information � Yahoo is a better sour
e of
urrent world events than newspapers. For this reason(and as pointed out in [3℄) there is a need for systems to
apture this
hanging information by notifyingusers of interesting events. For example, a bargain-hunter may sear
h for something on the web, but de
ideit's too expensive. He may then want to be alerted when the item be
omes
heaper. A food lover maywonder when
ertain
heeses are available in a
onvenient market. She too may want to be alerted. Su
husers would bene�t from a publish/subs
ribe system in whi
h they indi
ate their desires and they are alertedwhen items mat
hing those desires are met. A tool that implements this fun
tionality must be s
alable ande�
ient. Indeed, it should manage millions of user demands for noti�
ations (i.e. subs
riptions). It shouldhandle high rates of events (several million or more per day) and notify the interested users after only ashort delay. In addition, it should provide a simple and expressive subs
ription interfa
e and e�
iently
opewith the high volatility of web user demands (new subs
riptions, new users and
an
ellations). For example,a user may want to go from New York to California in the next 24 hours but only if he
an get a �ight forunder $400. Su
h a "subs
ription" would be short-lived.We model a publish/subs
ribe system as a system managing a stream of in
oming subs
riptions anda stream of in
oming data items (or events). Ea
h subs
ription and ea
h event is asso
iated with a timeinterval during whi
h it is
onsidered valid. A publish/subs
ribe system stores both valid subs
riptions andvalid event and provides two
omplementary fun
tionalities: First, when a new subs
ription
omes in, thesystem evaluates the subs
ription against the valid events. Se
ond, when a new event
omes in, the system
he
ks whi
h are the subs
riptions mat
hed by the new event and sends the event to the interested users.In this paper, we des
ribe a publish/subs
ribe system that supports millions of subs
riptions and a1

www.manaraa.com

high throughput of in
oming events (hundreds of new events per se
ond). We also
onsider the problem ofsupporting a high rate of subs
ription
hanges.1.1 The Event Mat
hing ProblemA subs
ription s in our system is a
olle
tion of predi
ates ea
h of whi
h is a triple
onsisting of anattribute, a value, and a relational operator (<;<=;=; ! =; >=; >).An event is a
onjun
tion of pairs, where ea
h pair
onsists of an attribute and a value. No two pairshave the same attribute. For example, (movie, groundhog day), (pri
e, $8), (theatre, odeon) is an event.An event pair (a', v') mat
hes a subs
ription predi
ate (a,v,relop) if a = a' and v' relop v. For example,(pri
e, $8) mat
hes (pri
e, $10, <=) be
ause they share the same attribute and $8 <= $10.An event e satis�es a subs
ription s if every predi
ate in s is mat
hed by some pair in e. For example,the event (movie, groundhog day), (pri
e, $8), (theatre, odeon) satis�es (movie, groundhog day, =), (pri
e,$10, �),(pri
e, $5, �).The mat
hing problem is: Given en event e and a set of subs
ription S �nd all subs
riptions that aresatis�ed by e.Notational Remark:In the rest of the paper, we denote the set of equality predi
ates of s by P (s). A(s) represents the setof all the attributes o

urring in the equality predi
ates of s. For example, for the subs
ription s =(movie,groundhog day, =), (pri
e, $10, �), (pri
e, $5, �) P (s) = (movie, groundhog day, =) and A(s) = movie.1.2 Database solutions for subs
ription mat
hingIn this se
tion, we examine how database systems
an be used to perform subs
riptions mat
hing di-re
tly. Until now, traditional database systems do not s
ale well to millions of subs
riptions and very highthroughput of in
oming data, but resear
h like this may
hange that state of a�airs.Database systems are designed for fast evaluation of queries against stored data sets. They also o�ertrigger fun
tionality that
an be used to
he
k subs
riptions when a new item
omes in. First all validdata items might be stored in a single universal table of the form D(A1; :::; An) where Ai; (i 2 1 � � �n)are all possible attributes1. Subs
riptions are de�ned as SQL triggers. For example, a subs
ription S((A1 = 3); (A3 > 6)) is implemented with the following SQL trigger :CREATE TRIGGER T_S asAFTER INSERT ON DREFERENCING NEW ROW AS newFOR EACH ROWBEGIN IF (new.A_1 = 3) AND (new.A_3 < 6)THEN signal(S);ENDTo manage millions of subs
riptions the database system must support millions of triggers (one per sub-s
ription) and ea
h single insertion of a data item may
ause the exe
ution of all millions of triggers. To makethis solution s
alable, database systems should implement optimization te
hniques for trigger exe
utions.Proje
ts TriggerMan [6℄ and NiagaraCQ [2℄ propose global optimization te
hniques for trigger exe
utions.Our solution is
lose to the spirit of Triggerman in that it proposed main-memory data stru
tures, thoughthe exa
t nature of the data stru
tures di�er.1Other s
hemas are possible but the essentials of ensuring the s
alability of triggers are the same.2

www.manaraa.com

1.3 ContributionsThis paper presents an e�
ient main memory mat
hing algorithm for mat
hing subs
riptions whi
h
anhandle a large number of volatile subs
riptions (several millions) and support high rates of in
oming dataitems (hundreds events per se
ond). Our algorithm has the following ni
e properties:1. It
reates data stru
tures that are tailored to the
omplexity of the subs
ription language.2. Our algorithm is �pro
essor
a
he
ons
ious� in that it maximizes temporal and spatial lo
ality. More-over we use te
hniques that avoid
a
he misses by using the pro
essor PREFETCH
ommand.3. Our mat
hing algorithm uses a s
hema based
lustering strategy built on two main ideas: (1) groupsubs
riptions based on their size and
ommon
onjun
tion of equality predi
ates, so many subs
riptions
an be (partly) evaluated using a single
omparison (2) use multi-attribute hashing indexes so severalsubs
ription attributes
an be evaluated using a single
omparison.4. We provide
ost-based algorithms that given the knowledge of subs
riptions and statisti
s on in
om-ing data items are able to
ompute and in
rementally adapt the optimal
lustering to
hanges insubs
ription and data item patterns.Our experiments using these algorithms show that we
an support several millions of subs
riptions, highrates of events (hundreds of events per se
ond) and high rates of subs
ription
hanges.Se
tion 2 gives a general des
ription of our mat
hing algorithm. Se
tion 3 presents our
ost-basedapproa
h to
ompute optimal
lustering. Se
tion 4 presents an adaptive algorithm to deal with
hanges insubs
ription and event patterns. Se
tion 5 presents related approa
hes and algorithms. Se
tion 6 presentperforman
e studies. Finally, se
tion 7
on
ludes.2 Solution overview2.1 Performan
e issues in main memory algorithmsWith the emergen
e of
heap
omputers having very large random a

ess memory, more and morealgorithms will run in main memory without any a

ess to se
ondary memory [10℄. However, PC pro
essorsstill have small
a
he memories: Pro
essor
a
he memories are stati
 RAM memories whi
h hold data thatwere re
ently referen
ed by running programs. Inside a
a
he memory, memory referen
es
an be pro
essedat pro
essor speed. Referen
es that are not found in the
a
he,
alled misses, require the fet
h of the
orresponding
a
he blo
k from the main memory at a mu
h higher
ost (tens of CPU
y
les). When a
a
he miss o

urs the pro
essor is (normally) idle until the fet
h is performed. So
a
he misses severelyimpede program performan
e. For this reason, main memory algorithm performan
e is not only sensitiveto the number of instru
tions they perform, but also to
a
he behavior. Moreover, the main trends are:(1)RAM size and pro
essor speed grow exponentially within the next years; (2) Pro
essor
a
he size doesnot in
rease more than linearly. Thus, main memory algorithms will be
ome more and more sensitive topro
essor
a
he behavior.Pro
essor
a
he management poli
ies are very simple (for evident pro
essing
ost reasons). However,modern pro
essors provide now the PREFETCH
ommand that permits a running program to for
e the fet
hof a
a
he blo
k from a spe
i�ed position in the RAM. This
ommand is exe
uted in parallel with programinstru
tions. Thus, if the program
an predi
t in advan
e whi
h
a
he blo
k it will need to read, it
anavoid a
a
he miss by prefet
hing the
a
he blo
k few instru
tions before. Another way to limit
a
he missesis to design algorithms that are aware of temporal and spatial lo
ality. Spatial lo
ality is a
hieved whendata that are used
onse
utively by the algorithm are pla
ed in
onse
utive memory addresses. Temporallo
ality is a
hieved when the same data is manipulated in
onse
utive instru
tions.3

www.manaraa.com

.

Bit vector

Indexes on

List of clusters

predicates lines:

detail of
one cluster

List of clusters

subscription line:

 mapping
1 to 1

predicates

clusters lists
 reference to
Vector of

Figure 1: Algorithm Data Stru
turesIn this paper we propose a mat
hing algorithm whi
h is spe
i�
ally designed to be
a
he
ons
ious. A lotof mat
hing algorithms have been proposed in the literature [7, 1, 4, 12, 9℄. Nevertheless, to our knowledge,none of them is aware of the
a
he behavior.2.2 The mat
hing algorithm2.2.1 Data-stru
turesThe algorithm data stru
tures are depi
ted in Figure 1. Re
all that a subs
ription s is de�ned by anidenti�er and a set of predi
ates of the form < attribute,
omparison operator, value>. An event is a set of<attribute, value> pairs.The algorithm uses a set of indexes, a predi
ate bit ve
tor and a ve
tor of referen
es to subs
riptions
lusters lists,
alled a
luster ve
tor. The algorithm uses the indexes to
ompute the set of predi
ates satis�edby a given in
oming event, and the set of
lusters whi
h are relevant for the event. Ea
h indexed predi
atethat o

urs in one or more subs
riptions is asso
iated with a single entry in the predi
ate bit ve
tor. Thisentry serves to represent the result of the predi
ate evaluation. It is set to 1 if the predi
ate is satis�ed bythe event and 0 otherwise.A predi
ate p may also be asso
iated with a referen
e to a list of subs
ription
lusters. In su
h
ase,we say that p is an a

ess predi
ate for all subs
riptions in the
lusters list. A predi
ate p
an be ana

ess predi
ate for a subs
ription s only if s
an only mat
h events that veri�es p. This guarantees thatsubs
riptions in the
luster list asso
iated to p need to be
he
ked if and only if p is satis�ed. Inside the
luster list, subs
riptions are grouped in subs
ription
lusters a

ording to their size (number of predi
ates).Figure 1 provides a detailed des
ription of a subs
ription
luster for subs
riptions having 3 predi
ates to
he
k. A subs
riptions
luster for subs
riptions of size n is organized as follows: It
onsists of a
olle
tion of n-dimensional arrays
alled a predi
ates array
ontaining referen
es to bit ve
tor entries and one 1-dimensionalarray
alled a subs
ription line that
ontains subs
ription identi�ers. Entry [i; j℄ of the predi
ates array
ontains a bit ve
tor referen
e to the ith predi
ate of the subs
ription whose identi�er is stored at position jin the subs
ription line. This subs
ription will mat
h an event if and only if all bit ve
tor entries referen
edat
olumn j of the predi
ates array are equal to 1.
4

www.manaraa.com

input:an event instan
e eglobal variables:a set of index I, a bit ve
tor B and a set of subs
riptions
lusters Clo
al variables:
andidate_C : a set of
lustersS : a set of subs
riptionsBody:B= 0;
andidate_C=;; S=;;1 Predi
ate testing:for ea
h index i in I dofor ea
h predi
ate p rea
hed by e through i doif p has a referen
e b to the bit ve
tor Bthen B[b℄ = 1if p is an a

ess predi
ate for a
lusters list l
then
andidate_C =
andidate_C [l
2 Subs
riptions mat
hing :For ea
h
luster
 in
andidate_CS = S [
luster_mat
hing(
)return S; Figure 2: The event mat
hing algorithm2.2.2 The event mat
hing algorithmThe algorithm is depi
ted in Figure 2 The algorithm is exe
uted ea
h time a new event
omes in. First,the predi
ate bit ve
tor is initialized to 0, Then the algorithm
onsists of two steps. The �rst step uses theindexes to
ompute the set of veri�ed predi
ates. Then, it sets to 1 all
orresponding entries in the predi
atebit ve
tor and
olle
ts the lists of
lusters having veri�ed a

ess predi
ates. The se
ond step
onsiders ea
h
andidate
luster and applies the
luster_mat
hing algorithm to
ompute mat
hing subs
riptions.2.2.3 The
luster mat
hing algorithmAn example of the Cluster_mat
hing algorithm is given below. This parti
ular example is spe
ialized fora group of subs
riptions that all have exa
tly three predi
ates. We have a
olle
tion of similar methodsspe
ialized for small numbers of predi
ates, in our
urrent implementation, ten or fewer. There is one generi
method to deal with subs
riptions having more predi
ates. A generi
 method is more time
onsumingbe
ause it needs an additional loop. However, most subs
riptions have a small number of predi
ates, so thegeneri

ode will not be
alled often.ansindex=0;for(j=0;j<number_of_subs
riptions;j+=UNFOLD) {for(k=j;k<j+UNFOLD;k++){if (sub_array[0℄[j℄ && sub_array[1℄[j℄ && sub_array[2℄[j℄){ answer[ansindex℄ = k; ansindex++;}}_prefet
h(sub_array[0℄[j+LOOKAHEAD℄);_prefet
h(sub_array[1℄[j+LOOKAHEAD℄);_prefet
h(sub_array[2℄[j+LOOKAHEAD℄);}There are several important features of this algorithm. First, noti
e that the subs
riptions are stored
olumnwise. Subs
ription j has entries in three separate subs
ription arrays. The reason for this
hoi
e isto improve data lo
ality. 5

www.manaraa.com

The loop over subs
riptions is partitioned into two loops. The value UNFOLD is
hosen so that UNFOLDarray entries �t into a
a
he line.2 At the end of the inner loop, we exe
ute some prefet
h instru
tions.These prefet
h subroutines are implemented dire
tly as assembly language prefet
h instru
tions, telling theCPU to
opy from RAM into the
a
he a
a
he line full of array entries, for pro
essing in the near future.The LOOKAHEAD value is
hosen so that the data arrives in the
a
he just before the CPU is ready to pro
essthat data. Su
h transfer is asyn
hronous, meaning that we
an overlap
omputation and data transfer.Ca
he Performan
e. The
olumnar storage means that every entry of sub_array[0℄will be
onsulted.If the
ondition being tested is relatively sele
tive, we may not
onsult every entry of sub_array[1℄ orsub_array[2℄ In fa
t, we may in some
ases avoid whole
a
he lines of these later arrays. (If we had useda row-wise storage method we would have been for
ed to tou
h every
a
he line.)Even though we are prefet
hing all
a
he-lines from all three arrays, it may pay to avoid reading
a
helines when possible for two reasons. First, the
a
he line may not have quite made it to the
a
he in time.Se
ond and more important, some pro
essors limit the number of simultaneous outstanding
a
he requests.(On a Pentium III, the limit is two.) Pro
essors reserve the right to drop prefet
h instru
tions when the limithas been rea
hed, sin
e prefet
h instru
tions are not essential for
orre
tness. Under su
h
ir
umstan
es,we
annot be
ertain that a prefet
hed
a
he line will a
tually make it to the
a
he. If we a

ess fewer
a
helines, the e�e
t of dropping prefet
h instru
tions will be redu
ed.For larger numbers of predi
ates, we have found empiri
ally that it doesn't pay to prefet
h all of the
orresponding arrays. Prefet
h instru
tions
ompete with one another a

ording to the limit above, andso it is better to avoid prefet
hing from arrays that are unlikely to be
onsulted, so that the frequently
onsulted arrays are prefet
hed more thoroughly.2.3 Algorithm AnalysisIn this se
tion we �rst analyze the properties of our approa
h in term of memory spa
e,
a
he misses,mat
hing time and subs
ription
hanges. We also dis
uss the problem of designing
lusters and introdu
ethe next se
tions.Spa
e
ost: Spa
e
ost is linear with the number of predi
ates: The size of the bit ve
tor is equalto the number of distin
t predi
ates. Moreover, ea
h subs
ription is stored in one single
luster that also
ontains all bit ve
tor referen
es to its predi
ates. Thus, the total size of the subs
riptions
lusters is linearwith the total number of predi
ates. Finally, an additional spa
e is used for indexes data-stru
tures. Byusing hash indexes for equality predi
ates and simple B-Trees for inequalities we
an guarantee a spa
e
ostfor indexes that is linear with the number of distin
t predi
ates.Ca
he misses: Temporal lo
ality is rea
hed by avoiding repetitive operations on the same data items.In our algorithm predi
ates are
he
ked no more than on
e. In the same way, a subs
ription is
he
ked nomore than on
e. Only entries in the bit ve
tor may be
he
ked several times. If subs
riptions have redundantpredi
ates the bit ve
tor is kept small and is resident in the pro
essor
a
he. Spatial lo
ality is rea
hedby using independent data-stru
tures for predi
ate mat
hing and subs
ription mat
hing. Thus we
an useoptimized main memory data stru
tures for predi
ate testing [10℄. Moreover by putting
losed togetherin the same
luster, subs
riptions that are likely to be
he
ked for the same event we
learly improvespatial lo
ality. Moreover by using size
riteria (number of predi
ates) to group subs
riptions in
lusterswe
an organize
lusters in integer arrays. This permit us to use asyn
hronous prefet
h operations in the
luster_mat
hing algorithm in order to redu
e the number of syn
hronous
a
hes misses whi
h dire
tlya�e
t response time.2For simpli
ity of presentation, this
ode assumes that the number of subs
riptions is a multiple of UNFOLD. In pra
ti
e, weneed a small separate pie
e of
ode to deal with a remainder of up to UNFOLD-1 subs
riptions.6

www.manaraa.com

Mat
hing time: The subs
riptions are grouped in
luster lists a

ording to their a

ess predi
ates.Subs
riptions in the same
luster list
an mat
h only events that verify the
luster list a

ess predi
ate. This
lustering permits the algorithm to
he
k only those subs
riptions whose a

ess predi
ate is veri�ed. Theperforman
e
hallenge is to de�ne a

ess predi
ates so that ea
h in
oming event has to be mat
hed againstonly a minimal number of
lusters. Equality predi
ates
ontained in subs
riptions are good
andidates fora

ess predi
ates. First,
he
king these predi
ates in
urs no additional
ost sin
e they are already
he
kedin the �rst step of the algorithm when
omputing the bit ve
tor. Se
ond using these predi
ates as a

esspredi
ates permits us to guarantee an ex
lusive a

ess to
lusters that are a

essed using equality predi
ateson the same attribute. This redu
es signi�
antly the number of
luster to a

ess per event making thepro
essing time sub-linear with the number of subs
riptions. For example,
onsider a simple workload that
onsists of n subs
riptions
ontaining an equality predi
ate on the same attribute A. If we assume a uniformdistribution of equality predi
ates on A values, the average number of subs
ription
he
ks per event havinga value for A would be n=DA where DA is the number of distin
t equality predi
ates on A
ontained inthe workload. Besides using equality predi
ates, a natural idea to limit the number of subs
ription
he
ksis to use a

ess predi
ates that are
onjun
tions of equality predi
ates. However, using multi-dimensionala

ess predi
ates in
urs additional spa
e and additional pro
essing
osts sin
e additional index stru
tures(e.g., hash table) are needed to
he
k them. There is a
lear trade-o� between the additional
ost of hashingand the number of subs
ription
he
ks that are saved. In se
tion 3 we propose a
ost based approa
h to
ompute an optimal
lustering using simple equality predi
ates and a
onjun
tion of equality predi
ates asa

ess predi
ates.Insertion and deletion of subs
riptions: The algorithm for adding a new subs
ription s in thesystem is very similar to the event mat
hing algorithm. It
onsists of two phases. First the algorithminserts predi
ates of s in the predi
ates indexes3. Then, the algorithm
hooses an a

ess predi
ate for s andinserts s in the
orresponding
luster. The
ost of insertion algorithm is
lose to the event mat
hing
ost.Indeed by using B_trees and/or hashing tables as indexes we
an keep the maintenan
e
ost of indexes
loseto the retrieving
ost. Moreover, inserting s in a
luster simply requires to add a new entry at the end of ea
hpredi
ates array and the subs
ription line of the
luster. Deletions
an be made fast by maintaining for ea
hsubs
ription the identi�er of the
luster that
ontains it. Besides the
ost of insertion or deletion, addingor deleting subs
riptions
an make obsolete and ine�
ient a previously optimal
lustering. In the sameway,
hanges in event patterns may degrade performan
e. In se
tion 4 we present an adaptive algorithmthat maintain an optimal
lustering while supporting high rates of subs
ription
hanges and in
oming dataitems.3 S
hema Based ClusteringThe s
hema based
lustering
onsists of (1) grouping the subs
riptions in terms of their size, and a
ommon
onjun
tion of equality predi
ates as a

ess predi
ate and (2) using multi-attribute hashing to �ndthe subs
ription
lusters. More pre
isely, given a
lustering instan
e C,
lusters of C are a

essed using a setof multi-attribute hash tables
alled a hashing
on�guration. Ea
h table of the
on�guration is asso
iatedwith a set of attributes,
alled its s
hema;, it allows one to a

ess
lusters having predi
ates a

ess builtover this s
hema. A hashing
on�guration H for a
lustering instan
e C is su
h that for ea
h
luster
 of Cthere is a table in H having an entry referen
ing
.Example 3.1 Consider a
olle
tion S of subs
riptions and three independently distributed attributes A,B, and C that are mentioned by some of the subs
riptions. Suppose that ea
h attribute has 100 values,and that all values for ea
h attribute are equiprobable. Suppose that there are 7 million subs
riptions in S,3Indexes are updated only if s
ontains a new predi
ate that is not already in the system.7

www.manaraa.com

and that every subs
ription in S has an equality
ondition on at least one of A, B, and C. There are sevennonempty subsets X of fA;B;Cg. For ea
h su
h X , suppose there are exa
tly 1 million subs
riptions fromS with equality predi
ates on exa
tly the attributes X .Consider a
lustering instan
e C1 involving a

ess predi
ates that are simple equality predi
ates on A,B, or C. Subs
riptions mentioning more than one attribute with equality would be pla
ed in the
lusterof one of them. If distributed uniformly, the population a

essed by ea
h hashing table would be 2.33million subs
riptions and ea
h
luster would
ontain 23,300 subs
riptions. Consider C2 involving a

esspredi
ates that are simple predi
ates on A, B, C, and
onjun
tions of two equality predi
ates on AB andBC. Subs
riptions with AC might be uniformly distributed between A and C, and subs
riptions with ABCmight be uniformly distributed between AB and BC. Thus, the hashing table populations would be A: 1.5million; B: 1 million; C: 1.5 million; AB: 1.5 million; BC: 1.5 million. Sizes of the
orresponding
lusterswould be A: 15,000; B: 10,000; C: 15,000 ; AB: 150; BC:150.Now
onsider the
ost of mat
hing an event that mentions A and B but not C. In C1 we would needto
onsult 1 of the A
lusters and 1 of the B
lusters, for a total
ost of two hash table lookups and 46,600subs
ription
he
ks. In C2, we would need to
onsult (on average) 1 of the A
lusters, 1 of the B
lusters,and 1 of the AB
lusters, for a total
ost of three hash table lookups and 25,150 subs
ription
he
ks. Basedon this analysis, we would expe
t the
lustering instan
e C2 to be preferred for this kind of event. Notethat when we get to
lusters having many equality predi
ates as a

ess predi
ate (say ABC) we expe
tjust one subs
ription to
he
k for an event mentioning A, B, and C. Further partitioning this
luster (sayinto ABCD for those subs
riptions with equality
onditions on A, B, C, and D) would probably not beworthwhile be
ause it would add an extra hash table lookup while redu
ing the number of subs
ription
he
ks by at most 1.The per event mat
hing
ost of the algorithm
an be de
omposed in three main parts: the
ost neededfor
omputing the value of the predi
ate bit ve
tor, the
ost of
omputing the referen
es of the relevant
lusters, and the
ost of
he
king the set of a

essed subs
riptions. As it is generally possible to buildseveral
lustering instan
es for a given set of subs
riptions, and the two later
osts are sensitive to the waythe subs
riptions are
lustered, the problem is to
hoose the most e�
ient
lustering. In this se
tion wedes
ribe a
ost-based approa
h to
ompute optimal (s
hema based)
lusterings for our mat
hing algorithm.The
hoi
e of the
lustering is based on a
ost fun
tion using statisti
s over the subs
riptions and the events.The se
tion is organized as follows. We �rst pre
ise the notions of a

ess predi
ate, hashing
on�gurationand
lustering instan
es. Then we give the mat
hing
ost and spa
e
ost in
urred by mat
hing a set ofsubs
riptions using a given
lustering. Finally we pose the
lustering problem in term of minimization ofthe mat
hing
ost under spa
e
onstraint, we enumerate the sear
h spa
e and we propose a greedy algorithmthat produ
es a lo
ally optimal solution.3.1 Multi-attribute
lusteringWe
onsider a

ess predi
ates de�ned as a
onjun
tion of equality predi
ates. Ana

ess predi
ate isde�ned by a pair < id; pred > where id is an identi�er, and pred is a set of equality predi
ates whi
h arepairwise di�erent over their attributes. The set of attributes o

urring in pred is
alled the s
hema of thethe a

ess predi
ate.Hashing
on�guration: Let AP be a set of a

ess predi
ates. In order to test these predi
atesagainst in
oming events we use one (or several) multi-attribute hashing stru
tures. Ea
h hashing stru
tureis intended to
he
k predi
ates having a
ertain s
hema. More pre
isely: A multi-attribute hashing stru
tureover a set of a

ess predi
ates is de�ned by a pair < A; h > where A is a set of attributes
alled the s
hemaof the stru
ture, and h is a hash fun
tion whi
h takes an event, and returns the identi�er of the a

esspredi
ate (if it exists) having A as s
hema, and whi
h is satis�ed by e. We
all a hashing
on�guration for8

www.manaraa.com

a set of a

ess predi
ates AP the set of hashing stru
tures H = {< A1; h1 >, .., < An; hn >} that
oversall s
hemas of a

ess predi
ates in AP . We
all s
hema of the
on�guration H the set {A1, .., A�n} of thes
hemas of the tables in H.Clustering instan
e: Given S a set of subs
riptions we group the subs
riptions using a

ess predi-
ates. A subs
ription
luster is de�ned by a triplet < id; p; subs > where id is an identi�er, p is an a

esspredi
ate, and subs is a set of subs
riptions su
h that ea
h subs
ription
ontains all the predi
ates o

urringin p. We
all
lustering instan
e for S a set C of
lusters over the subs
riptions of S su
h that ea
h sub-s
ription of S appears in one and only one
luster of C. In the following we note C(s) the
luster
ontainingsubs
ription s, and AP (C) the set of all the a

ess predi
ates to the
lusters of C . Given an a

ess predi
atep of AP (C), we note
lusters(C; p) the set of
lusters having p as a

ess predi
ates, (note that these
lustersdi�er from ea
h others by the size of their subs
riptions). Finally, we
all hashing
on�guration for C thehashing
on�guration
overing AP (C).3.1.1 Mat
hing
ost of a
lustering instan
e:Assume from now that we have a set S of subs
riptions, a
lustering instan
e C for S and H the asso
iatedhashing
on�guration. The
ost of mat
hing an event on S using C in
ludes (1) the
ost for retrieving therelevant multi-attribute indexes for the event, (2) the hashing
ost for ea
h relevant table, and (3) the
ostfor
he
king the a

essed subs
riptions.Thus the per event
luster
ost mat
hing is given by:mat
hing(S;C;H) = index_retrieving(H) + XH2H�(H)hashing(H)+ Xp2AP (C) �(p)(X
2
luster(C;p)
he
king(p;
))where index_retrieving(H) is the
ost for retrieving the indexes, �(H) is the probability that the s
hemaof the in
oming event in
ludes the s
hema of H , hashing(H) is the
ost of running the hashing fun
tion ofH , �(p) is the probability for an event to satisfy the a

ess predi
ate p, andP
2
luster(C;p)
he
king(p;
) isthe total
ost for
he
king the subs
riptions in the
lusters set having p as a

ess predi
ate.
he
king(p;
)is the
he
king
ost for one
luster. It takes into a

ount the fa
t that the group of predi
ates in p is already
he
ked, so only the remaining predi
ates have to be
he
ked.In the following we assume that : (1) the
ost for retrieving the relevant indexes is linear with thenumber of stru
tures in the hashing
on�guration. (2) the hashing
ost is independent from the size of thehashing stru
ture but linear with the size of the s
hema of the hashing stru
ture, (3) the
ost of
he
kinga set of subs
riptions is linear with the number of subs
riptions. All these assumptions are
onsistent withour implementation. Using these assumptions leads to the following simpli�ed
ost formula:mat
hing(S;C;H) = Kr� j H j +XH2H�(H)(Ch +Kh� j H:A j) +Xs2S �(C(s):p) �
he
king(C(s):p; s)Where j H j, and j H:A j represent the number of indexes and the size of the s
hema of H respe
tively, Kr,Ch and Kh represent three
onstants, C(s) is the
luster
ontaining s and C(s):p is its a

ess predi
ate.3.1.2 Spa
e
ost of a
lustering instan
e:The spa
e
ost of a
lustering instan
e C on S using the hashing
on�guration H in
ludes (1) the
ost forstoring hashing stru
tures to AP (C) (2) the
ost for storing
lusters.9

www.manaraa.com

Thus the spa
e
ost is given bySpa
e(S;C;H) = XH2H(init_spa
e(H) + Xp2AP (H:A)hash_spa
e(H; p)) + X
2
luster(C)
luster_spa
e(
:p;
)where init_spa
e(H) is the initial spa
e ne
essary to
reate an empty hash table. hash_spa
e(H; p) is thespa
e ne
essary to manage an entry for a

ess predi
ate p in hashing stru
ture H .
luster_spa
e(
:p;
)is the size of
luster
. Regarding the data stru
tures for
lusters (see 2) this size is equal to Kspa
e �Ps2
 size(s� p:preds) where Kspa
e represents a
onstant.3.2 Computing the best
lustering instan
eGoal: Let S be a set of subs
riptions, the problem is to �nd the
lustering instan
e for S, thatminimizes the
luster
he
king
ost depi
ted above under the
onstraint that the total spa
e o

upied bythe subs
riptions
lusters and the hashing stru
tures is less than a given amount of (main memory) spa
e.An exhaustive algorithm would examine all the possible
lustering instan
es. In su
h approa
h, thealgorithm builds ea
h
lustering instan
e by pi
king out one possible predi
ate group for ea
h subs
riptionand �nds the asso
iated mat
hing
ost and spa
e. So, the number of
lustering instan
es examined by anexhaustive algorithm is �s2S(2jP (s)j) = 2jSjP where j P (s) j is number of equality predi
ates of s, P is theaverage number of equality predi
ates per subs
ription and, j S j represents the number of subs
riptions.Su
h
omplexity makes the exhaustive algorithm impra
ti
able. We propose a greedy algorithm whoseworst
ase
omplexity is j S j �(j GA(S) j)2 where j S j represents the number of subs
riptions, GA(S) isthe set of the attribute groups o

urring in subs
riptions of S and j GA(S) j represents the
ardinality ofGA(S); this number is bound by 2jAj where A denotes the set of attributes o

urring in equality predi
atesof S. Our algorithm starts from a �natural�
lustering that
onsists in grouping the subs
riptions usingsimple equality predi
ates as a

ess predi
ates. Indeed using these equality predi
ates as a

ess predi
atesin
urs no additional hashing (and spa
e)
ost sin
e hashing stru
tures are already de�ned and used forthe predi
ate testing phase of the global mat
hing algorithm 2. Then we improve this initial
lustering byde�ning additional multi-attribute hash tables. The additional tables are
hosen in
rementally step by step.At ea
h step we use a bene�t fun
tion to de
ide whi
h hash table to add. The bene�t fun
tion is basedon the notion of best
lustering instan
e for a hashing
on�guration s
hema. We �rst explain this notion,then we give the bene�t fun
tion and des
ribe the algorithm. Our algorithm produ
es a lo
al optimum.Experimental results in se
tion 6 show the mat
hing time improvements realized through this algorithm.3.2.1 Best
lustering instan
e for a hashing
on�guration s
hema.Let S be a set of subs
riptions, A a hashing
on�guration s
hema for S and C(A) the set of all the
lusteringinstan
es having A as hashing
on�guration s
hema. We
all best
lustering instan
e for A a
lusteringinstan
e that gives the best mat
hing
ost among all
lustering instan
es in C(A). Su
h
lustering instan
e
an be built by iterating over S and
hoosing for ea
h subs
ription s in S the predi
ate a

ess p in GP (s)\Athat minimizes �(p)
he
king(p; s). Indeed, mat
hing
ost formula 3.1.1 shows that two
lustering instan
esasso
iated with a same hashing
on�guration s
hema only di�er over the total
he
king
ost (see line 3 ofthe formula). In the following we note best(S;A) a best
lustering instan
e for A, best
ost(S;A) the
ostof su
h best
lustering instan
e and Spa
e(S;A) its spa
e
ost.3.2.2 Bene�t of a
hoi
e of an additional hashing stru
tureLet S be a set of subs
riptions, H a hashing
on�guration for S and A its s
hema. The mat
hing bene�t ofadding a hashing stru
ture H of s
hema A to H with respe
t to H is denoted by B(S;A; A) and is de�ned as10

www.manaraa.com

best
ost(S;A)� best
ost(S;A[fAg). The spa
e
ost of adding H is denoted by DS(S;A; A) and is de�nedby Spa
e(S;A [fAg) - Spa
e(S;A) if Spa
e(S;A[fAg) > Spa
e(S;A) and 0 otherwise. The bene�t perunit spa
e of adding a hashing stru
ture of s
hema A is 0 if B(S;A; A) � 0 and B(S;A; A)=DS(S;A; A)otherwise. Bene�t per unit of spa
e may be in�nite if mat
hing bene�t is stri
tly positive and DS is 0 (i.e., some spa
e is saved).3.2.3 The Greedy algorithmThe algorithm is des
ribed bellow. It takes as input a set S of subs
riptions, and Maxsize a spa
e
on-straint and returns a hashing
on�guration s
hema and the asso
iated best
lustering instan
e that �ts intoMaxsize.given :S, a set of subs
riptions, and Maxsize, the spa
e
onstraint.GA = GA(S)A0 = ffAg j A is an attribute involved in some equality predi
ate in S}A = A0C = best(S;A)while(Spa
e(S;A) < Maxsize)Among all s
hemas in GA�A let B be a s
hema whi
h hasthe maximum positive bene�t per unit spa
e with respe
t to A.if B does not exist then return(A,C)else A = A [fBgC = best(S;A)endifend whilereturn (A,C)4 Dynami
 ClusteringThe goal of
lustering is to minimize the number of subs
ription
he
ks. In the stati
 approa
h presentedabove,
lustering de
isions are taken given the global knowledge of all subs
riptions in the system and theknowledge of statisti
s about in
oming event streams. But subs
ription and event patterns may
hangeover time degrading an initial optimal
lustering. To
ope with this problem a �rst solution
onsists inperiodi
ally re
omputing from s
rat
h a
lustering instan
e that is adapted to the new situation. Dueto the
omplexity of this reorganization, this solution is well suited for appli
ations where subs
riptionsand event patterns are relatively stable during large time intervals. But this stati
 approa
h is
learlyimpra
ti
able when patterms are evolving
ontinually.In this se
tion we des
ribe a dynami

lustering algorithm that in
rementally adapts
lustering to
hangesin subs
ription and event patterns. Our algorithm dynami
ally de
ides (1) when to redistribute subs
riptionsfrom a given a
luster to other more pro�table
lusters, (2) when to delete a hash table and redistribute itssubs
riptions and, (3) when to
reate a new hash table and what table to
reate.These de
isions rely on three metri
s
alled bene�t margin, absolute bene�t and, reparation power. A
luster is redistributed when its bene�t margin be
omes high. A hash table is removed when its absolutebene�t is too small and a new table is
reated when its reparation power is su�
iently high. We �rst givede�nition of these metri
s and show the use of these metri
s to
hara
terize the
urrent state of a
lusteringinstan
e. Then we des
ribe the maintenan
e algorithm. This algorithm is parametrized by thresholds settingminimal values for absolute bene�t and reparation power and maximal values for bene�t margin. Finally11

www.manaraa.com

we dis
uss the maintenan
e
ost and the impa
t of thresholds over the tradeo� between maintenan
e
ostand mat
hing
ost.Absolute bene�t: Absolute bene�t measures the average number of
he
ks that are saved for a given
lustering instan
e
ompared to the
ase where no a

ess predi
ate is used. Let C be a
lustering instan
e,
 a
luster in C, and s a subs
ription in
. The absolute bene�t of s in
 is equal to (1� �(p
)) where p
is the a

ess predi
ate of
 and �(p
) is the probability that an in
oming event satis�es p
. Indeed, whenin
luster
, subs
ription s is
he
ked with a probability �(p
) instead of being systemati
ally
he
ked if noa

ess predi
ate were used for s. The absolute bene�t of a
luster
 is the sum of all the bene�ts of itssubs
riptions and is equal to (1 � �(p
))� j
 j. The absolute bene�t of a hash table H is the sum of theabsolute bene�ts of its
lusters and is equal to P
2H(1� �(p
))� j
 j.Bene�t margin: The bene�t margin fo
uses on the number of
he
ks that
ould be saved from agiven
lustering instan
es if all possible a

ess predi
ates were used. Let C be a
lustering instan
e
 a
luster in C and s a subs
ription in
. The bene�t margin of s in
 is equal to (�(p
)� �(P (s))) where p
 isthe a

ess predi
ate of
, P (s) is the maximal group of equality predi
ates of s and, �(p
) and �(P (s)) arerespe
tively the probability that an in
oming event satis�es p
 and P (s). The rationale for this is that P (s)is a superset of p
. The bene�t margin of a
luster
 is the sum of all the bene�t margin of its subs
riptionsand is equal to Ps2
(�(p
)� �(P (s)).Reparation power: Let C be a
lustering instan
e and H its asso
iated hashing
on�guration. Thereparation power of hash table that is not in H and with respe
t to a set of
lusters C 0 in C is the absolutebene�t that
ould be obtained by moving subs
riptions from
lusters
 to H . This bene�t is equal toPs2Dmove(H;C0)(1 � �(pHs)) where Dmove(H;C 0) is the set of subs
riptions whi
h are in a
luster
 of C 0and su
h that �(p
) � �(pHs) where pHs is the new a

ess predi
ate for s in H and p
 is the a

ess predi
ateof
.Algorithm Metri
s: In order to use metri
s that are not
ostly to
ompute we use as metri
s anapproximation of the parameters above. This approximation is based on the fa
t that sele
tivity of equalitypredi
ates is usually (very) low. Thus we
hara
terize the
urrent state of the
lustering instan
e as follows:� For ea
h
luster
 the approximate bene�t margin of
 is noted BM(
) and is de�ned as �(p) j
 j� For ea
h hash table H , its approximated bene�t is noted B(H) and is de�ned as j H j� For any potential hash table H for a set of
lusters C 0 its approximated reparation power is notedRP (H;C 0) and is de�ned as j Dmove(H;C 0) j.4.1 Maintenan
e AlgorithmMaintenan
e algorithm is parametrized by three threshold values: BMmax, Bmin and RPmin. Themaintenan
e algorithm will a
t in two situations: (1)The Cluster bene�t margin of a
luster rises to BMmaxand (2)The bene�t of an existing hashing table falls below Bmin. The bene�t margin of a
luster
 mayin
rease for two reasons: There is an insertion of a subs
ription in
 and, there is an in
rease of the sele
tivity�(p
) of the a

ess predi
ate of
. The bene�t of a hash table may de
rease when subs
riptions are deleted.In our implementation these metri
s are updated at ea
h insertion and deletion of a subs
ription. We alsoassume that an independent tool periodi
ally provides statisti
s over events streams and their impa
t ona

ess predi
ate sele
tivity.The algorithm is des
ribed bellow. A
tions undertaken by the algorithm to
ope with situation (1)and (2) are twofold and are performed in two distin
t phases. At a �rst phase the maintenan
e algorithmattempts a redistribution of subs
riptions. When dealing with a
luster
 with ex
essive bene�t marginthe algorithm tries to redistribute ea
h subs
ription s of
 into another existing table that maximizes the12

www.manaraa.com

absolute bene�t of s. When dealing with a table H with an insu�
ient absolute bene�t the algorithmremoves H and redistributes its
lusters. Redistribution of
lusters is performed by redistribute() fun
tion.This fun
tion is re
ursive. Indeed, as redistribution indu
es insertions in other
lusters it may re
ursivelyindu
e redistribution of other
lusters. Redistribution terminates when there is no more subs
ription tomove. Sin
e a subs
ription is moved at �rst try toward its best table, subs
riptions
annot be moved morethan on
e. When no more subs
riptions
an be moved, it may happen that some
lusters have still anex
essive bene�t margin. Fun
tion redistribute returns these
lusters. These
lusters are
andidate to these
ond phase of the algorithm for reparation. The goal of the se
ond phase is to �nd some additional hashtables able to redu
e this remaining bene�t margin.This reparation phase takes as input the set of
lusters to repair returned by �rst phase. New tablesare
hosen in terms of their reparation power w.r.t. the bene�t margin to solve. The algorithm
onsidersonly
andidate tables able to re
eive subs
riptions from the input
lusters. It �rst updates their reparationpower. Then it sele
ts and
reates tables whi
h
umulates a su�
ient reparation power up to RPmax. Itmay happen that some
luster sent by �rst phase
annot be repaired immediately due to the fa
t that thetables that
ould repair it do not have
umulated a su�
ient reparation power. Nevertheless the
luster
ontributes to in
rease their reparation power that
ould be
ome su�
ient after several iterations of phaseone. As soon as one of these tables is
reated,
luster subs
riptions are moved to it.Maintenan
e Algorithm:given :C the
urrent
lustering instan
e and H its asso
iated hashing
on�gurationPH a set of
andidate hash tables that are not in HPHASE 1: RedistributionON SITUATION_1(
) /* A
luster
 has an ex
essive bene�t margin*/
andidate_phase2 = redistribute(
; C)ON SITUATION_2(H) /* A table H has an insu�
ient bene�t */H = H -H;Forea
h subs
ription s in H domove s toward the
luster in H�H that maximizes bene�ts of s;ENDForea
hForea
h
luster
 that re
eived subs
riptions due to the deletion of H doIf SITUATION_1(
) then
andidate_phase2 + = redistribute(
; C) ENDIfENDForea
hForea
h
luster
 that was deleted due to the deletion of H doIf SITUATION_1(
) then add
 to deleted_
lusters ENDIfENDForea
hPHASE 2: Creation of new hash tablesForea
h
 in deleted_
lusters doForea
h table H in PH \GA(
) doupdate reparation power of H w.r.t deletion of
remove
 from
andidate_repair(H)ENDForea
hENDForea
hForea
h
 in
andidate_phase2 doForea
h table H in PH \GA(
) doupdate reparation power of H w.r.t
add
 to
andidate_repair(H)ENDForea
hENDForea
h 13

www.manaraa.com

While(SITUATION_3) /* there exists a
andidate table with a su�
ient reparation power*/Choose a table H that has a su�
ient reparation powerH= H [fHgmove to H all subs
riptions in
andidate_repair(H) that have a better bene�t in Hupdate all metri
sENDwhile/* S3 */Besides the
ost of maintaining ea
h hash table, the maintenan
e
ost is proportional to the number ofsubs
ription moves. When a new subs
ription s arrives the insertion algorithm
hooses always the hash tablethat gives the best absolute bene�t for s. However s may move to another hash table during its lifetime if(1) deletion of other subs
riptions make insu�
ient the bene�t of its hash table or, (2) insertions or
hangesin event statisti
s in
rease the bene�t margin of the
luster of s and triggers the
reation of a hash table thatis better for s. Choi
e of threshold values
learly impa
ts on the number of moves. Indeed, Bmin impa
tson the number of hash table deletions. BMmax impa
ts the amount of
lusters
andidate for new hashtables. Finally, RPmin impa
ts the number of hash table
reations. In terms of mat
hing
ost, BMmaxquanti�es the pro�tability of
hanging a
luster. More pre
isely it indi
ates an a

eptable
luster
he
king
ost under whi
h no
luster reorganization is pro�table. For example if a
luster
 has a large size but isvery rarely
he
ked its bene�t margin �(p
)� j
 j may be small enough to de
ide that its average
he
king
ost is a

eptable and
 will never
andidate to reorganization. In the same spirit RPmin quanti�es thepro�tability to
reate a new hash table. Bmin quanti�es the pro�tability to maintain an existing hash tablein the
lustering
on�guration. In se
tion 6 we study the performan
e of the maintenan
e algorithm bothin terms of improvements of mat
hing
ost and maintenan
e
ost.5 Related workA lot of main memory mat
hing algorithms have been proposed in the
ontext of
ontent based pub-lish/subs
ribe systems [1, 8, 11℄, and triggers [6℄. At the basis of these algorithms there are two mainte
hniques.The former one
onsists in two phase algorithms whi
h test the predi
ates during a �rst step, then
ompute the mat
hing subs
riptions using the results of the �rst step. Our proposal is a two phase algorithm.We
an also
ite [12, 8, 9℄. Neonet[8℄ uses a version of
ounting algorithm for the se
ond step. The
ounting algorithm
onsists in �
ounting� for ea
h subs
ription its number of hits, i.e. its number of satis�edpredi
ates. To a
hieve this, the algorithm maintains an asso
iation table giving for ea
h predi
ate, thesubs
riptions where it o

urs. Ea
h time a predi
ate is satis�ed, the
ount of the
orresponding subs
riptionsis in
remented. SIFT[12℄ is a SDI system allowing users to subs
ribe for do
uments by spe
ifying a set ofweighted keywords. Ea
h keyword
orresponds to a predi
ate keyword in the do
ument. In a �rst step, thedo
ument is parsed for �nding keywords, and then the best mat
hing subs
riptions are
omputed using asimilar
ounting approa
h. Mat
hing algorithm proposed by Pereira et al in [9℄ uses a similar approa
hto our algorithm. This algorithm groups subs
riptions with respe
t to their number of predi
ates (as ouralgorithm does). But it doesn't use prefet
hing for optimizing the se
ond step of the algorithm, and it onlyuses single predi
ates as grouping
riterium. Our performan
e evaluation bellow shows the bene�t of usingprefet
hing and multi-attribute hashing tables.The se
ond te
hnique
onsists in
ompiling subs
ription predi
ates in a test network ala A_TREAT[5℄(that
ould be a tree stru
ture). Internal nodes represent tests (i.e. predi
ates), the leaves of the network
ontain referen
es to subs
riptions. Events enter the network at the root of the network they are tested atinternal nodes progressing from node to node if node test su

eeds. Event having su

essfully satisfy all thetests along a path rea
hes a leaf and obtain by referen
e the mat
hing subs
riptions. In these algorithms,ea
h subs
ription
an appear in only one leaf (as proposed in Aguilera et al [1℄), or may appear in several14

www.manaraa.com

leaves (as in Gough[4℄). In the �rst
ase an in
omming event only have to follow one path in the tree. Whilein the se
ond
ase it generally have to follow several paths. Therefore the �rst solution is more e�
ientbut it is very spa
e
onsumming. The algorithm proposed by Aguilera et al is used in the Gryphon system.When
ompared with the two phase approa
h, these algorithms su�er of several drawba
ks. First theyhave a bad temporal and spatial lo
ality, se
ond they are spa
e
onsumming, third the test network datastru
tures are
omplex and
ostly to maintain with respe
t to insertion and updates of subs
riptions makingthese solutions not well suited for high rates of subs
ription
hanges.Algorithms above are designated for
onjun
tions of (attribute,
omparison operator,
onstant) predi-
ates �ltering event
ontent. Triggerman and NiagaraCQ address respe
tively the problem of trigger
ondi-tion and
ontinous queries evaluation. They both optimize
onditions that
ombine predi
ates on in
ommingevent with predi
ates on a
urrent database state. In both
ases the algorithm works in two steps. the�rst step is a �ltering step over the
ontent of in
omming events in order to sele
t the database
onditionswhi
h are
andidate to a
omplete evaluation. During the se
ond step,
andidate
onditions (resp. queries)are evaluated using global optimization te
hniques. However, the more dis
riminating the �ltering step,the less the amount of
omputation of the evaluation step. In NiagaraCQ database queries are evaluatedusing a global multi-query plan in
luding split operators where queries are grouped a

ording to
ommonpredi
ate signatures 4. Only the most sele
tive signature (usually a sele
tion predi
ate with equality op-erator) is
hosen for initial �ltering, other sele
tions are performed further in the plan. TriggerMan usesa A_TREAT network to evaluate
onditions. Its �ltering step is more sophisti
ated than in NiagaraCQsin
e it
an
onsist in
onjun
tions of equality predi
ates signatures. Both use index te
hniques to improve�ltering through equality predi
ates. Our algorithm works on any
onjun
tion of equality and inequalitypredi
ates over event
ontent. It
ould be used to enhan
e the �ltering phase of TriggerMan and NiagaraCQby permitting more powerful event �ltering that uses together equality and inequality predi
ates. Ea
h sub-s
ription in our algorithm would be an entry point in the
ommon query plans (network for TriggerMan)that would only
onsist in joins and splits operators. Even when �ltering is limited to equality predi
atesour
ost based algorithms
an improve performan
e by
hoosing the best multi-key index
on�guration.Indeed the performan
e experiments in the next se
tion show that the best index
on�guration is neitherthe one
onsisting in
hoosing simple equality predi
ates (as NiagraCQ does) nor the one
onsisting insystemati
ally
hoosing the maximal
onjun
tions of equality predi
ates. We show that using
ost basedalgorithms we
an approa
h the best
on�guration.6 Performan
e EvaluationIn this se
tion we evaluate the performan
e of our algorithm and
ompare the e�e
t of our
lusteringstrategies. We
onsider three versions of our algorithm: The simple propagation algorithm use only singleequality predi
ates as a

ess predi
ates. To evaluate the e�e
ts of the PREFETCH
ommand (see se
tion 2we
ompare two implementations of the propagation algorithm: propagation does not use prefet
hing whilepropagation_wp does use prefet
hing. The stati
 algorithm and the dynami
 algorithms use a
lusteringstrategy that takes advantage of
onjun
tions of equality predi
ates. With the stati
 algorithm the
lusteringis build stati
ally using the
ost based algorithm depi
ted in se
tion 3. In the dynami
 Algorithm
luster-ing is in
rementally maintained using the maintenan
e algorithm depi
ted in se
tion 4. Both algorithmsare implemented with prefet
hing. Finally for
omparison with (part of) related work we implementedthe
ounting algorithm (see 5) sin
e it is used in many publish/subs
ribe systems. All algorithms areimplemented in our publish/subs
ribe system prototype. The system is evaluated under various simulatedworkloads, a

ounting for subs
riptions and events emitted to the system. Our experimental results showthat our algorithms are able to handle a large number of subs
riptions (several millions) and a high rate of4i.e, (attribute,
omparison operator) for sele
tion predi
ates and (attribute1,
omparison operator, attribute2) for joins.15

www.manaraa.com

events (up to thousand events per se
ond). A more detailed analysis of the
hara
teristi
s of the variousalgorithms is presented below.6.1 Experimental Setup and Workload GenerationWe ran all experiments on a single-CPU Pentium workstation with an i686 CPU at 500MHz and 1GBRAM operating under Linux. The publish and subs
ribe system runs as a pro
ess on this workstationwaiting for subs
ription and events to pro
ess. Subs
riptions and events
an be submitted to the systemat any time. We implemented a workload generator that, a

ording to a workload spe
i�
ation, emitssubs
riptions and events to the publish/subs
ribe system. The workload generation task ran as a separatepro
ess on the same workstation as the publish/subs
ribe system. Subs
riptions and events are emitted tothe system in �xed-size bat
hes. The bat
h size may be set in the workload spe
i�
ation.In order to evaluate the mat
hing algorithms under a high number of subs
riptions and high event ratewe have developed the following evaluation framework.5Subs
riptions and events are drawn randomly a

ording to a workload spe
i�
ation that determinessubs
riptions, predi
ates, events, and attribute names. A subs
ription workload spe
i�es the total numberof subs
riptions to generate nS , a bat
h size nSb , that determines the number of subs
riptions to submitto the system at on
e, the number of predi
ates per subs
ription nP , the number of predi
ates �xed persubs
ription nPfix (broken down in nPfix= , nPfix> , and nPfix< , i.e., the number of predi
ates with therespe
tive operators), and a predi
ate workload spe
i�
ation.Predi
ates are determined by a name, an operator, a value domain, and the domain's
ardinality. Thevalue domain may be spe
i�ed per predi
ate or on
e for all predi
ates. It determines the value of a predi
ateand is spe
i�ed with a lower and upper bound, lP and uP , respe
tively. Values are drawn from this domaingoverned by a uniform distribution. Predi
ate names are drawn from the prede�ned set of attribute names.The same set of attribute names is used to draw attribute names for events. The total number of namesavailable is determined by nt.Analogously, events are determined by the number of events to generate nE , the bat
h size of events tosubmit to the system at on
e nEb , the number of attribute value pairs within the event nA, the number ofattributes �xed nAfix (same breakdown as for subs
riptions), and the value domain, determined by a lowerand an upper bound, lA, uA, respe
tively. Values are drawn uniformly distributed from this domain. Forall experiments we use intervals of positive integers as value domains.The following determinants are used to in�uen
e the mat
hing behavior of the algorithms in a proba-bilisti
 sense, i.e., to
ontrol the number of mat
hed subs
riptions for a given workload spe
i�
ation and todetermine parameter settings for the workload generation spe
i�
ations.The event attribute data skew determines the distribution of attribute values of events. It may bespe
i�ed di�erently for ea
h attribute in the event, (in the following referred to as event skew.)The subs
ription predi
ate data skew determines the distribution of predi
ate values. It may be spe
i�eddi�erently for ea
h predi
ate in the subs
ription, (in the following referred to as subs
ription skew.)The
orrelation between subs
ription and event skews determine the overlap of predi
ate and attributevalue domains. In modifying this
orrelation the number of events mat
hed for a given workload spe
i�
ation
an be in�uen
ed. This is ne
essary to evaluate the algorithmi
 behavior of the di�erent mat
hing algorithmsat di�erent points in their state spa
e. It is also required to
ross-validate the mat
hing behavior of thealgorithms. The workload parameters that �x a
ertain number of predi
ates (respe
tively attributes) serve5It would be very resour
e intense to evaluate the algorithms with a pre�
omputed workload, where we know the numberof events mat
hed per subs
ription
on�guration. We resort to a simulated workload, where subs
riptions and events aredrawn randomly a

ording to a workload spe
i�
ation. The spe
i�
ation allows us to in�uen
e the mat
hing behavior of thealgorithm in a probabilisti
 sense (a priori determine the number of mat
hes for a given workload spe
i�
ation).16

www.manaraa.com

to determine the number of di�erent subs
ription s
hemas that are generated on average6.Table 1 summarizes the workload spe
i�
ation parameters and their values for our experiments.Parameter Des
ription RangeGlobal parametersnt total number of predi
ate / attribute names 32Subs
ription and predi
ate determining parametersnS total number of subs
riptions 100.000 - 6.000.000nSb number of subs
riptions to submit to the system at on
e 10.000nP number of predi
ates per subs
ription 3 - 16nPfix number of predi
ates �xed per subs
ription 2 - 8lPi , uPi limits of value domain of predi
ates (per predi
ate i) 5 - 100Event determining ParametersnE number of events ...nEb number of events to submit to the system at on
e 100nA number of attribute value pairs per event 32nAfix number of attributes �xed 32lA, uA limits of value domain of attributes 5 - 100Table 1: Parameter de�nitions and range values.To evaluate and
ompare the performan
e of the di�erent algorithms we use the following metri
s:overall system throughput, memory size, and system update time. The overall system throughput measuresthe number of events pro
essed per unit of time for various
on�gurations of the system. The memorysize
aptures the resident memory size of the publish/subs
ribe system pro
ess, separately for the di�erentalgorithms, at di�erent system states. System update time measures the time it takes to submit updates(insertions and deletions) to the publish/subs
ribe system.Timings are taken in mill-se
onds within the workload generating pro
ess, just before events or subs
rip-tions have been submitted to the publish/subs
ribe system pro
ess and right after the system responds. Thesystem responds to event submissions with the noti�
ations that
ontain the IDs of mat
hed subs
riptions.The timings therefore in
lude the interpro
ess
ommuni
ation times and individual timings a

ount for thepro
essing of an entire bat
h of subs
riptions or events submitted.We ran several experiments multiple times and did not noti
e a signi�
ant di�eren
e in the results. We,therefore, do not report varian
es in our �gures, whi
h were lower than 0.1%, for the experimental runsrepeated.6.2 Experiments6.2.1 Total System Throughput and System S
alabilityIn this series of experiments we assume that the publish/subs
ribe system is subje
t to a large number ofsubs
riptions, that these subs
riptions stay in the system for a long time, and that the system must handlea high rate of events. These are the basi
 assumptions upon whi
h we designed the mat
hing algorithms.This also represents the key requirements under whi
h, we assume, our system will have to operate.We demonstrate the total system throughput for a given number of subs
riptions a
ross all algorithms.We also evaluate the s
alability
hara
teristi
s of our system, i.e., its performan
e in terms of event through-put with an in
reasing number of subs
riptions to pro
ess. We further measure the memory utilization andthe time it takes to pro
ess a
onstant number of subs
riptions by the system (i.e., system update time).Figure 3 (a)
ompares overall system throughput a
ross all algorithms. The following workload spe
i�-
ation was used: W0 = (nt = 32, nP = 5 (2 �xed, all equality), nA = 32 (all �xed), value domain: (l = 1,6This number may be
al
ulated
ombinatorially as follows: (nt�nPfix)!(nt�nP)!(nP�nPfix)! .17

www.manaraa.com

1

10

100

1000

10000 100000 1e+06 1e+07

m
a
tc

h
in

g
 t
im

e
 i
n
 m

s

number of subscriptions

matching process time per event

counting
propagation

propagation_wp
dynamic

0

0.5

1

1.5

2

2.5

3

3.5

0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06

m
a
tc

h
in

g
 p

ro
c
e
s
s
 t
im

e
 i
n
 m

s

number of subscriptions

matching process time per event

dynamic W1
dynamic W2

propagation_wp W1
propagation_wp W2

(a): nP=5, nPfix = 2, nS varies (b) nP=(4; 9), nPfix = (3; 8), nS varies

0

100000

200000

300000

400000

500000

600000

700000

800000

0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06

m
e
m

o
ry

 i
n
 K

 b
y
te

s

number of subscriptions

resident memory size

counting
propagation

propagation_wp
dynamic

0

1e+06

2e+06

3e+06

4e+06

5e+06

6e+06

7e+06

8e+06

9e+06

1e+07

0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06

ti
m

e
 i
n
 m

s

number of subscriptions

subscription loading time

counting
propagation

propagation_wp
dynamic

static

(
): nP=5, nPfix = 2, nS varies (d): nP=5, nPfix = 2, nS variesFigure 3: event mat
hing pro
essing time, memory resident size and subs
ription loading time for the severalalgorithms.u = 35) (no skews), nSb = 10:000, nEb = 100) (the same workload is used in Figures 3(
) and 3(d)). Asexpe
ted, the dynami
 algorithm shows the best performan
e, while the
ounting algorithm is the leastperforman
e. The performan
e of the propagation algorithms lies in between these two. The prefet
hingte
hnique applied in the implementation of one of the propagation algorithms improves its performan
eadditionally by a fa
tor of 1.5 for large numbers of subs
riptions. For instan
e, mat
hing 100 events against6.000.000 subs
riptions takes on the average 90377 ms (
ounting), 804 ms (propagation), 509 ms (propaga-tion with prefet
hing) and 166 ms (dynami
). A notable feature of the dynami
 algorithm is the fa
t thatthe mat
hing time is kept independent from the number of subs
riptions. This ni
e behavior is ensured bydynami
ally
reating new hashing tables when the size of
lusters be
omes too large. We also ran experi-ments to
ompare the dynami
 algorithm with the stati
 algorithm. Stati
 algorithm produ
ed
lusteringinstan
es that were very similar to those obtained by the dynami
 (one or two additional hashing tables)and did not signi�
antly beat the dynami
 algorithm (few ms per 100 events). This shows that the metri
sused in the dynami
 algorithm provide a good approximation of
lustering bene�ts.All algorithms we implemented work in two phases. The �rst phase
onsists in to determining allpredi
ates mat
hed by an event, the se
ond phase
onsists in to determining all mat
hed subs
riptionbased on the information gained in the �rst phase. Predi
ate mat
hing is done by the same fun
tion forall algorithms. Propagation and dynami
 algorithms are designed to optimize the se
ond phase. In ourexperiments, we separately measured ea
h phase. The 166 ms used by the dynami
 algorithm for mat
hing18

www.manaraa.com

100 events are spent as follows: All satis�ed predi
ates are dis
overed in 130ms, this in
ludes the time topro
ess events (i.e., parse arriving events et
.). All mat
hing subs
riptions were found in 10 ms. The restof the time was spent
ommuni
ating the IDs of mat
hing subs
riptions ba
k to the
lient pro
ess. Thepropagation (with prefet
hing) algorithm spends the same time for predi
ates
he
king and
ommuni
ationbut its subs
ription mat
hing time in
reases with the number of subs
riptions (from 10ms with 100.000subs
riptions to 353ms with 6.000.000). Predi
ate mat
hing performan
e may still be improved for allalgorithms, if highly optimized index stru
ture on predi
ate domains are used. Our primary goal has beento highly optimize the subs
ription mat
hing phase, as te
hniques of the former are well known.Figure 3 (b)
ompares overall system throughput of the dynami
 algorithm and the propagation withprefet
hing algorithm for di�erent kinds of operators in predi
ates. The workload spe
i�
ations 7 were set asfollows: W1 = (nS = 3:000:000, nP = 4, nPfix= = 2, nPfix> = 1 and one none �xed predi
ate with equalityoperator,
hosen freely among the nt = 32 unused predi
ate names) and W2 = (nS = 3:000:000, nP = 9,nPfix= = 2, nPf ix< = 5, nPfix> = 1 and one none �xed predi
ate with equality operator,
hosen freely amongthe nt = 32 unused predi
ate names). The results show that both algorithms are sensitive to non-equalitypredi
ates. Their performan
e de
reases by a
onstant fa
tor as more non-equality predi
ates (i.e., W2 vs.W1) are being pro
essed. The number of satis�ed non-equality predi
ates
omputed in the �rst phase ofthe algorithms is greater in W2 as more non-equality predi
ates are being generated in the workload. Theperforman
e di�eren
e of both algorithms is equal. This is due to the fa
t that both algorithms use thesame
luster propagation algorithm to handle non-equality predi
ates. In this algorithm bit ve
tor entriesasso
iated to inequality predi
ates of a given subs
ription s are
he
ked only if all equality predi
ates of sare veri�ed. Sin
e both algorithms are tested on similar subs
ription workloads the probability that su
hsituation arises is the same for both of them. Performan
e gain of the dynami
 algorithm, as shown in theleft �gure is due to its improved handling of equality predi
ates via multi-attribute hash tables.Figures 3(
) show memory utilization (�rst �gure) and subs
ription loading time (se
ond �gure) a
rossall algorithms. The individual graphs follow the natural intuition (in
reased pro
essing time and memoryuse, due to in
reased data pro
essing and storage needs). In terms of memory utilization, the propagationalgorithms (both use the same internal data stru
tures) require the least amount of memory,
losely followedby the
ounting algorithm, while the dynami
 algorithms requires the most. The multi-attribute hash-tablesused in the dynami
 algorithm let it use the most memory. The subs
ription load time (
f. Figure 3(d)) issmallest for the
ounting algorithm, whi
h deploys very simple data stru
tures, and highest for the stati
algorithm, that stati
ally
omputes from s
rat
h an optimal
lustering
on�guration. Compared to Stati
algorithm, the dynami
 algorithm improves signi�
antly the loading time by reorganizing in
rementallyits internal data stru
tures during pro
essing to best suit the subs
riptions en
ountered thus far. Theexperiments results depi
ted in Figure 3(a) show that the mat
hing performan
e obtained with in
rementally
omputed
lusterings is as good as the ones obtained by the stati
 algorithm.6.2.2 In�uen
e of Number of Predi
ates and Size of Value DomainWe performed a series of experiments to test the in�uen
e of the number of predi
ates, the size of thepredi
ate value domains, and the kind of predi
ate operators used in subs
riptions. Due to spa
e limitations,we
an only summarize our results here.We ran an experiment that in
reased, in steps of 20, the size of the value domain of predi
ates, from10 to 100. We tested the performan
e of the dynami
 algorithm and the propagation algorithm on thisworkload8. We
on
lude that the more values in the domain, the better the performan
e of the algorithms.This is due to the fa
t that the higher the sele
tivity of ea
h domain the fewer subs
ription need to be7We only list values that di�er from the above workload spe
i�
ation.8All other parameters of the workload being equal to the values above.19

www.manaraa.com

event maximal throughput

0

50

100

150

200

250

300

350

400

450

2 4 6 8 10 12 14 16 18 20
time in hours

ev
en

ts
 p

er
 s

dynamic strategy

"no change" strategy

event maximal throughput

0

100

200

300

400

500

600

2 4 6 8 10 12 14 16 18 20
time in hours

ev
en

ts
 p

er
 s

dynamic strategy

"no change" strategy

(a): Changing subs
riptions s
hemas (b): adding subs
ription and event skewFigure 4: Evolution of event throughput under varying
onditionsveri�ed. Furthermore, the dynami
 algorithm is less sensitive to this fa
tor than the propagation algorithm.This is explained by the fa
t that the dynami
 algorithm
an take advantage of multi-attributes a

esspredi
ates.To test the in�uen
e of the number of predi
ates we ran a series of experiments that in
reased the numberof predi
ates in steps of twos, from 4 to 14. The
on
lusion here is that the more predi
ates per subs
riptionthe better the performan
e of the dynami
 algorithm. On en
ountering subs
riptions with many predi
atesearly on, the algorithm will build hash tables with more a

ess patterns and therefore improve performan
e.6.2.3 Adaptivity to Subs
ription UpdatesUnder real world
onstraints, publish/subs
ribe systems deployed on the Internet are likely to be subje
tedto a
onstant stream of subs
ription updates (e.g., modi�
ations, insertions, and deletions) and events.Subs
riptions and events are likely to
hange in stru
ture and
ontent value distributions over time. Certainsimilarity patterns within neighboring elements in the streams may be observable. Subs
riptions and eventsmay, for instan
e,
hange in terms of their predi
ates' domains. Our dynami
 mat
hing algorithm aims athandling these
onditions. In order to study its adaptive behavior in
omparison to the other algorithms insu
h a
ontext we simulate these
onditions in this set of experiments.In these experiments we
onsider situations where the publish/subs
ribe system has to handle
on
ur-rently in
oming events and a high rate of in
oming subs
riptions. We assume a subs
ription has a livetime of about 16 hours. Given a subs
ription rate of 50 subs
ription insertions per se
ond, the system willhave to pro
ess roughly three million events after aging subs
riptions are deleted from the system. We saythe system rea
hes saturation.9 In the following experiments we investigate the behavior of our algorithmsat system saturation. In the experiments the system is �rst populated with three million subs
riptionsa

ording to a workload spe
i�
ation. At this state we remove 50 subs
riptions (representing the 50 oldestones, inserted 16 hrs ago) and insert 50 new subs
riptions every se
ond. If the system
an manage theseinsertions and deletions in less than one se
ond, we use the remaining time before the next se
ond ti
k tosend events to the system and we measure the number of events the system
an handle within the remainingtime. We measure system evolution a

ording to various appli
ation s
enarios where subs
ription and eventpatterns are
hanging.The �rst experiment depi
ted in Figure 4(a), investigates the impa
ts of subs
ription s
hema
hanges.This experiment models a situation where subs
ribers subje
ts of interest are
hanging along the time.We start from a workload W_1 = (nt = 16, nS = 3:000:000, nP = 5, nPfix= = 1, nA = 32, lpi = lA= 1, upi = uA = 35) where all the 3.000.000 subs
riptions fo
us on 16 of the 32 attributes available in916 � 3600 � 50sub=s = 2:880:000. 20

www.manaraa.com

the system and events provide uniform values for the 32 attributes. At saturation we use a
lustering
on�guration that it optimal for W_1. During the �rst two hours subs
riptions and events are followingworkload W_1. Then we insert subs
riptions a

ording to a new workload W_2 similar to W_1 ex
eptit fo
uses on the 16 attributes that are not addressed in W_1. After 18 hours the system rea
hes a newstable state where all subs
riptions in the system are following W_2. We
ontinue to run the experimentduring two hours inserting and deleting W_2 subs
riptions. Figure 4(a) shows the evolution of the averageevent throughput along the time (throughput is averaged every two hours) and
ompares two oppositestrategies for
lustering maintenan
e: The dynami
 strategy uses the Dynami
 algorithm to adapt
lusteringto subs
riptions
hanges by
reating (deleting) hashing tables. The No Change strategy does not
hangethe initial (optimal)
lustering
on�guration. Figure 4(a) shows that the �No Change� strategy does notprevent performan
e to degrade when subs
riptions s
hema are
hanging. At the end the event throughputis divided by two. On the other hand the dynami
 strategy adapts the
lustering to the new situation. Inthe last two hours when subs
ription patterns are stable again, the system
an handle 350 events per se
ondinstead of 200 events per se
ond with �No Change� strategy. However during the transition phase, Dynami
algorithm performan
e is quite irregular. This is due to the additional maintenan
e
ost that o

urs whennew hashing tables are
reated. This
ost is qui
kly
ompensated by the mat
hing bene�t of the new tables.This makes dynami
 strategy most of the time better than �No Change� strategy.The se
ond experiment is depi
ted in Figure 4(b). It investigates the impa
t of subs
ription skew whenit is
ombined with event skew. This experiment models a situation where a same interest raises for bothsubs
ribers and publishers. Typi
al examples arise in news Dissemination systems: Few days before ele
tionof US president everybody may want to know about the
andidates. At the same time, more and moreinformation is published on this subje
t. To model this phenomena we built the following experiment. Westart from a workload W_1 = (nt = 32, nS = 3:000:000, nP = 5, nPfix= = 2, nA = 32, lpi = lA = 1,upi = uA = 35) where equality predi
ates and attributes values are uniformly distributed among 35 values.During the �rst two hours, subs
riptions and events are following workloadW_1. Then after two hours we
reate both event skew and subs
ription skew. All new events and new subs
riptions are inserted a

ordingto a new workload W_2. W_2 is similar to W_1 ex
ept there is a skew (2 di�erent values instead of35) on attribute values and predi
ates of one of the two �xed attributes used by subs
riptions in W_1.After 18 hours the system rea
hes a new stable state where all subs
riptions in the system are followingW_2. We then still run the system during two hours inserting W_2 subs
riptions. Figure 4(b) shows theevolution of the average event throughput along time (every two hours) when using the dynami
 and theNo Change strategies. Figure 4(b) shows that the �No Change� strategy does not prevent performan
e todegrade when more skewed subs
riptions are
oming into the system. At the end, the event throughput hasredu
ed by 20%. On the other hand the dynami
 strategy adapts the
lustering to the new situation. Atthe end of the experiment when subs
ription patterns are stable the system
an manage almost the samethroughput has before10. At the beginning of the transition phase the
ost of maintaining
lustering remainsslightly preponderant
ompared to the mat
hing bene�t. But after 8 hours the mat
hing bene�t obtainedby
lustering reorganization over
omes the maintenan
e
ost.7 Con
lusionIn this paper we propose a main memory algorithm for �ltering event
ontents with respe
t to
on-jun
tions of (attribute,
omparison operator,
onstant) predi
ates. Our algorithm has the following ni
eproperties: (1) our algorithm is �pro
essor
a
he
ons
ious� in that it maximizes temporal and spatial lo-
ality. Moreover we use te
hniques that avoid
a
he misses by using pro
essor PREFETCH
ommand. (2)10Due to subs
ription and event skew, more subs
riptions are mat
hed at the end of the experiment. This in
urs an additional
ost that
annot be
ompensated by
lustering reorganization.21

www.manaraa.com

Our algorithm uses a s
hema based
lustering strategy in order to minimizes the number of subs
ription
he
ks. Subs
ription
lusters are a

essed through multi-attribute hashing tables.(3) Its
lustering strategyis based on a
ost model to
ompute the optimal hashing
on�guration and the
orresponding
lusters givenstatisti
s on in
oming events. (4) We also propose a dynami
 algorithm to
reate and remove
lusters andhashing tables dynami
ally when the set of subs
ription is modi�ed (due to insertions and deletions) orwhen event patterns are
hanging. (5) Performan
e studies show that our algorithm
an support severalmillions of subs
riptions and (very) high rates of events (600 hundreds event per se
ond for 6 Millions ofsubs
riptions on a single-CPU Pentium workstation with an i686 CPU at 500MHz and 1GB RAM). (6)Performan
e studies also show that our algorithm
an support high rates of subs
ription
hanges.Our �ltering algorithm is implemented in a publish/subs
ribe system and already provides an e�
ientsupport to a subs
ription language
onsisting of DNF
onditions on events. We also think that our algorithm
an be used as an e�
ient (pre-)�ltering module in more powerful Publish/subs
ribe systems su
h as SQLtriggers and
ontinuous queries.Referen
es[1℄ M. K. Aguilera, R. E. Strom, D. C. Sturman, M. Astley, and T. D. Chandra. Mat
hing events ina
ontent-based subs
ription system. In Eighteenth ACM Symposium on Prin
iples of DistributedComputing (PODC '99), 1999.[2℄ J. Chen, D. DeWitt, F. Tian, and Y. Wang. Niagara
q: A s
alable
ontinuous query system for internetdatabases. In In Pro
. of the ACM SIGMOD Conf. on Management of Data, 2000.[3℄ P. Bernstein et al. The asilomar report on database resear
h. ACM Sigmod re
ord, 27(4), 1998.[4℄ K. J. Gough and G. Smith. E�
ient re
ognition of events in distributed systems. In Pro
eedings ofACSC-18, 1995.[5℄ E. Hanson. Rule
ondition testing and a
tion exe
ution in ariel. In Pro
eedings of the ACM SIGMODInternational Conferen
e on Management of Data, pages 49�58, 1992.[6℄ E. Hanson, C. Carnes, L. Huang, M. Konyala, L. Noronha, S. Parasarathy, J. Park, and A. Vernon.S
alable trigger pro
essing. In Pro
eedings of the International Conferen
e on Data Engineering, pages266�275, 1999.[7℄ E. N. Hanson, M. Chaabouni, C. Kim, and Y. Wang. A predi
ate mat
hing algorithm for databaserule systems. In SIGMOD'90, 1990.[8℄ New Era of Networks In
. http://www.neonsoft.
om/produ
ts/NEONet.html.[9℄ Joao Pereira, Françoise Fabret, François Llirbat, and Dennis Shasha. E�
ient mat
hing for web-basedpublish/subs
ribe systems. In Pro
. of the Int. Conf. on Cooperative Information Systems (COOPIS),Eilat, Israel, 2000.[10℄ Jun Rao and Kenneth A. Ross. Ca
he
ons
ious indexing for de
ision-support in main memory. InVLDB'99, Pro
eedings of 25th International Conferen
e on Very Large Data Bases, pages 78�89, 1999.[11℄ B. Segal and D. Arnold. Elvin has left the building: A publish/subs
ribe noti�
ation servi
e withquen
hing. In Pro
eedings of AUUG97, 1997.[12℄ T. Yan and H. Gar
ia-Molina. The sift information dissemination system. In ACM TODS 2000, 2000.22

