
www.manaraa.com

Filtering Algorithms and Implementation for Very FastPublish/Subsribe SystemsFrançoise Fabret Arno Jaobsen François Llirbat João Pereira Ken RossDennis ShashaAbstratPublish/Subsribe is the paradigm in whih users express long-term interests (�subsriptions�) and some externalagent (perhaps other users) �publishes� events (e.g., o�ers). The job of Publish/Subsribe software is to send eventsto the owners of subsriptions satis�ed by those events. For example, a user subsription may onsist of an interestin an airplane of a ertain type, not to exeed a ertain prie. A published event may onsist of an o�er of an airplanewith ertain properties inluding prie. A subsription losely resembles a trigger in that it is a long-lived onditionalquery assoiated with an ation (usually, informing the subsriber). However, it is less general than a trigger sonovel data strutures and implementations may enable the reation of salable, high performane publish-subsribesystems. This paper desribes an attempt at the onstrution of suh algorithms and its implementation. Usinga ombination of data strutures, appliation-spei� ahing poliies, and appliation-spei� query proessingour system an handle 600 events per seond on 6 million subsriptions onsisting of onjuntions of (attribute,omparison operator, value) prediates.1 Motivation and Desription of the ProblemMuh of human information will be on the Web in ten years. The Web is partiularly well-suited tohanging information � Yahoo is a better soure of urrent world events than newspapers. For this reason(and as pointed out in [3℄) there is a need for systems to apture this hanging information by notifyingusers of interesting events. For example, a bargain-hunter may searh for something on the web, but deideit's too expensive. He may then want to be alerted when the item beomes heaper. A food lover maywonder when ertain heeses are available in a onvenient market. She too may want to be alerted. Suhusers would bene�t from a publish/subsribe system in whih they indiate their desires and they are alertedwhen items mathing those desires are met. A tool that implements this funtionality must be salable ande�ient. Indeed, it should manage millions of user demands for noti�ations (i.e. subsriptions). It shouldhandle high rates of events (several million or more per day) and notify the interested users after only ashort delay. In addition, it should provide a simple and expressive subsription interfae and e�iently opewith the high volatility of web user demands (new subsriptions, new users and anellations). For example,a user may want to go from New York to California in the next 24 hours but only if he an get a �ight forunder $400. Suh a "subsription" would be short-lived.We model a publish/subsribe system as a system managing a stream of inoming subsriptions anda stream of inoming data items (or events). Eah subsription and eah event is assoiated with a timeinterval during whih it is onsidered valid. A publish/subsribe system stores both valid subsriptions andvalid event and provides two omplementary funtionalities: First, when a new subsription omes in, thesystem evaluates the subsription against the valid events. Seond, when a new event omes in, the systemheks whih are the subsriptions mathed by the new event and sends the event to the interested users.In this paper, we desribe a publish/subsribe system that supports millions of subsriptions and a1

www.manaraa.com

high throughput of inoming events (hundreds of new events per seond). We also onsider the problem ofsupporting a high rate of subsription hanges.1.1 The Event Mathing ProblemA subsription s in our system is a olletion of prediates eah of whih is a triple onsisting of anattribute, a value, and a relational operator (<;<=;=; ! =; >=; >).An event is a onjuntion of pairs, where eah pair onsists of an attribute and a value. No two pairshave the same attribute. For example, (movie, groundhog day), (prie, $8), (theatre, odeon) is an event.An event pair (a', v') mathes a subsription prediate (a,v,relop) if a = a' and v' relop v. For example,(prie, $8) mathes (prie, $10, <=) beause they share the same attribute and $8 <= $10.An event e satis�es a subsription s if every prediate in s is mathed by some pair in e. For example,the event (movie, groundhog day), (prie, $8), (theatre, odeon) satis�es (movie, groundhog day, =), (prie,$10, �),(prie, $5, �).The mathing problem is: Given en event e and a set of subsription S �nd all subsriptions that aresatis�ed by e.Notational Remark:In the rest of the paper, we denote the set of equality prediates of s by P (s). A(s) represents the setof all the attributes ourring in the equality prediates of s. For example, for the subsription s =(movie,groundhog day, =), (prie, $10, �), (prie, $5, �) P (s) = (movie, groundhog day, =) and A(s) = movie.1.2 Database solutions for subsription mathingIn this setion, we examine how database systems an be used to perform subsriptions mathing di-retly. Until now, traditional database systems do not sale well to millions of subsriptions and very highthroughput of inoming data, but researh like this may hange that state of a�airs.Database systems are designed for fast evaluation of queries against stored data sets. They also o�ertrigger funtionality that an be used to hek subsriptions when a new item omes in. First all validdata items might be stored in a single universal table of the form D(A1; :::; An) where Ai; (i 2 1 � � �n)are all possible attributes1. Subsriptions are de�ned as SQL triggers. For example, a subsription S((A1 = 3); (A3 > 6)) is implemented with the following SQL trigger :CREATE TRIGGER T_S asAFTER INSERT ON DREFERENCING NEW ROW AS newFOR EACH ROWBEGIN IF (new.A_1 = 3) AND (new.A_3 < 6)THEN signal(S);ENDTo manage millions of subsriptions the database system must support millions of triggers (one per sub-sription) and eah single insertion of a data item may ause the exeution of all millions of triggers. To makethis solution salable, database systems should implement optimization tehniques for trigger exeutions.Projets TriggerMan [6℄ and NiagaraCQ [2℄ propose global optimization tehniques for trigger exeutions.Our solution is lose to the spirit of Triggerman in that it proposed main-memory data strutures, thoughthe exat nature of the data strutures di�er.1Other shemas are possible but the essentials of ensuring the salability of triggers are the same.2

www.manaraa.com

1.3 ContributionsThis paper presents an e�ient main memory mathing algorithm for mathing subsriptions whih anhandle a large number of volatile subsriptions (several millions) and support high rates of inoming dataitems (hundreds events per seond). Our algorithm has the following nie properties:1. It reates data strutures that are tailored to the omplexity of the subsription language.2. Our algorithm is �proessor ahe onsious� in that it maximizes temporal and spatial loality. More-over we use tehniques that avoid ahe misses by using the proessor PREFETCH ommand.3. Our mathing algorithm uses a shema based lustering strategy built on two main ideas: (1) groupsubsriptions based on their size and ommon onjuntion of equality prediates, so many subsriptionsan be (partly) evaluated using a single omparison (2) use multi-attribute hashing indexes so severalsubsription attributes an be evaluated using a single omparison.4. We provide ost-based algorithms that given the knowledge of subsriptions and statistis on inom-ing data items are able to ompute and inrementally adapt the optimal lustering to hanges insubsription and data item patterns.Our experiments using these algorithms show that we an support several millions of subsriptions, highrates of events (hundreds of events per seond) and high rates of subsription hanges.Setion 2 gives a general desription of our mathing algorithm. Setion 3 presents our ost-basedapproah to ompute optimal lustering. Setion 4 presents an adaptive algorithm to deal with hanges insubsription and event patterns. Setion 5 presents related approahes and algorithms. Setion 6 presentperformane studies. Finally, setion 7 onludes.2 Solution overview2.1 Performane issues in main memory algorithmsWith the emergene of heap omputers having very large random aess memory, more and morealgorithms will run in main memory without any aess to seondary memory [10℄. However, PC proessorsstill have small ahe memories: Proessor ahe memories are stati RAM memories whih hold data thatwere reently referened by running programs. Inside a ahe memory, memory referenes an be proessedat proessor speed. Referenes that are not found in the ahe, alled misses, require the feth of theorresponding ahe blok from the main memory at a muh higher ost (tens of CPU yles). When aahe miss ours the proessor is (normally) idle until the feth is performed. So ahe misses severelyimpede program performane. For this reason, main memory algorithm performane is not only sensitiveto the number of instrutions they perform, but also to ahe behavior. Moreover, the main trends are:(1)RAM size and proessor speed grow exponentially within the next years; (2) Proessor ahe size doesnot inrease more than linearly. Thus, main memory algorithms will beome more and more sensitive toproessor ahe behavior.Proessor ahe management poliies are very simple (for evident proessing ost reasons). However,modern proessors provide now the PREFETCH ommand that permits a running program to fore the fethof a ahe blok from a spei�ed position in the RAM. This ommand is exeuted in parallel with programinstrutions. Thus, if the program an predit in advane whih ahe blok it will need to read, it anavoid a ahe miss by prefething the ahe blok few instrutions before. Another way to limit ahe missesis to design algorithms that are aware of temporal and spatial loality. Spatial loality is ahieved whendata that are used onseutively by the algorithm are plaed in onseutive memory addresses. Temporalloality is ahieved when the same data is manipulated in onseutive instrutions.3

www.manaraa.com

.

Bit vector

Indexes on

List of clusters

predicates lines:

detail of
one cluster

List of clusters

subscription line:

 mapping
1 to 1

predicates

clusters lists
 reference to
Vector of

Figure 1: Algorithm Data StruturesIn this paper we propose a mathing algorithm whih is spei�ally designed to be ahe onsious. A lotof mathing algorithms have been proposed in the literature [7, 1, 4, 12, 9℄. Nevertheless, to our knowledge,none of them is aware of the ahe behavior.2.2 The mathing algorithm2.2.1 Data-struturesThe algorithm data strutures are depited in Figure 1. Reall that a subsription s is de�ned by anidenti�er and a set of prediates of the form < attribute, omparison operator, value>. An event is a set of<attribute, value> pairs.The algorithm uses a set of indexes, a prediate bit vetor and a vetor of referenes to subsriptionslusters lists, alled a luster vetor. The algorithm uses the indexes to ompute the set of prediates satis�edby a given inoming event, and the set of lusters whih are relevant for the event. Eah indexed prediatethat ours in one or more subsriptions is assoiated with a single entry in the prediate bit vetor. Thisentry serves to represent the result of the prediate evaluation. It is set to 1 if the prediate is satis�ed bythe event and 0 otherwise.A prediate p may also be assoiated with a referene to a list of subsription lusters. In suh ase,we say that p is an aess prediate for all subsriptions in the lusters list. A prediate p an be anaess prediate for a subsription s only if s an only math events that veri�es p. This guarantees thatsubsriptions in the luster list assoiated to p need to be heked if and only if p is satis�ed. Inside theluster list, subsriptions are grouped in subsription lusters aording to their size (number of prediates).Figure 1 provides a detailed desription of a subsription luster for subsriptions having 3 prediates tohek. A subsriptions luster for subsriptions of size n is organized as follows: It onsists of a olletion of n-dimensional arrays alled a prediates array ontaining referenes to bit vetor entries and one 1-dimensionalarray alled a subsription line that ontains subsription identi�ers. Entry [i; j℄ of the prediates arrayontains a bit vetor referene to the ith prediate of the subsription whose identi�er is stored at position jin the subsription line. This subsription will math an event if and only if all bit vetor entries referenedat olumn j of the prediates array are equal to 1.
4

www.manaraa.com

input:an event instane eglobal variables:a set of index I, a bit vetor B and a set of subsriptions lusters Cloal variables:andidate_C : a set of lustersS : a set of subsriptionsBody:B= 0; andidate_C=;; S=;;1 Prediate testing:for eah index i in I dofor eah prediate p reahed by e through i doif p has a referene b to the bit vetor Bthen B[b℄ = 1if p is an aess prediate for a lusters list lthen andidate_C = andidate_C [l2 Subsriptions mathing :For eah luster in andidate_CS = S [luster_mathing()return S; Figure 2: The event mathing algorithm2.2.2 The event mathing algorithmThe algorithm is depited in Figure 2 The algorithm is exeuted eah time a new event omes in. First,the prediate bit vetor is initialized to 0, Then the algorithm onsists of two steps. The �rst step uses theindexes to ompute the set of veri�ed prediates. Then, it sets to 1 all orresponding entries in the prediatebit vetor and ollets the lists of lusters having veri�ed aess prediates. The seond step onsiders eahandidate luster and applies the luster_mathing algorithm to ompute mathing subsriptions.2.2.3 The luster mathing algorithmAn example of the Cluster_mathing algorithm is given below. This partiular example is speialized fora group of subsriptions that all have exatly three prediates. We have a olletion of similar methodsspeialized for small numbers of prediates, in our urrent implementation, ten or fewer. There is one generimethod to deal with subsriptions having more prediates. A generi method is more time onsumingbeause it needs an additional loop. However, most subsriptions have a small number of prediates, so thegeneri ode will not be alled often.ansindex=0;for(j=0;j<number_of_subsriptions;j+=UNFOLD) {for(k=j;k<j+UNFOLD;k++){if (sub_array[0℄[j℄ && sub_array[1℄[j℄ && sub_array[2℄[j℄){ answer[ansindex℄ = k; ansindex++;}}_prefeth(sub_array[0℄[j+LOOKAHEAD℄);_prefeth(sub_array[1℄[j+LOOKAHEAD℄);_prefeth(sub_array[2℄[j+LOOKAHEAD℄);}There are several important features of this algorithm. First, notie that the subsriptions are storedolumnwise. Subsription j has entries in three separate subsription arrays. The reason for this hoie isto improve data loality. 5

www.manaraa.com

The loop over subsriptions is partitioned into two loops. The value UNFOLD is hosen so that UNFOLDarray entries �t into a ahe line.2 At the end of the inner loop, we exeute some prefeth instrutions.These prefeth subroutines are implemented diretly as assembly language prefeth instrutions, telling theCPU to opy from RAM into the ahe a ahe line full of array entries, for proessing in the near future.The LOOKAHEAD value is hosen so that the data arrives in the ahe just before the CPU is ready to proessthat data. Suh transfer is asynhronous, meaning that we an overlap omputation and data transfer.Cahe Performane. The olumnar storage means that every entry of sub_array[0℄will be onsulted.If the ondition being tested is relatively seletive, we may not onsult every entry of sub_array[1℄ orsub_array[2℄ In fat, we may in some ases avoid whole ahe lines of these later arrays. (If we had useda row-wise storage method we would have been fored to touh every ahe line.)Even though we are prefething all ahe-lines from all three arrays, it may pay to avoid reading ahelines when possible for two reasons. First, the ahe line may not have quite made it to the ahe in time.Seond and more important, some proessors limit the number of simultaneous outstanding ahe requests.(On a Pentium III, the limit is two.) Proessors reserve the right to drop prefeth instrutions when the limithas been reahed, sine prefeth instrutions are not essential for orretness. Under suh irumstanes,we annot be ertain that a prefethed ahe line will atually make it to the ahe. If we aess fewer ahelines, the e�et of dropping prefeth instrutions will be redued.For larger numbers of prediates, we have found empirially that it doesn't pay to prefeth all of theorresponding arrays. Prefeth instrutions ompete with one another aording to the limit above, andso it is better to avoid prefething from arrays that are unlikely to be onsulted, so that the frequentlyonsulted arrays are prefethed more thoroughly.2.3 Algorithm AnalysisIn this setion we �rst analyze the properties of our approah in term of memory spae, ahe misses,mathing time and subsription hanges. We also disuss the problem of designing lusters and introduethe next setions.Spae ost: Spae ost is linear with the number of prediates: The size of the bit vetor is equalto the number of distint prediates. Moreover, eah subsription is stored in one single luster that alsoontains all bit vetor referenes to its prediates. Thus, the total size of the subsriptions lusters is linearwith the total number of prediates. Finally, an additional spae is used for indexes data-strutures. Byusing hash indexes for equality prediates and simple B-Trees for inequalities we an guarantee a spae ostfor indexes that is linear with the number of distint prediates.Cahe misses: Temporal loality is reahed by avoiding repetitive operations on the same data items.In our algorithm prediates are heked no more than one. In the same way, a subsription is heked nomore than one. Only entries in the bit vetor may be heked several times. If subsriptions have redundantprediates the bit vetor is kept small and is resident in the proessor ahe. Spatial loality is reahedby using independent data-strutures for prediate mathing and subsription mathing. Thus we an useoptimized main memory data strutures for prediate testing [10℄. Moreover by putting losed togetherin the same luster, subsriptions that are likely to be heked for the same event we learly improvespatial loality. Moreover by using size riteria (number of prediates) to group subsriptions in lusterswe an organize lusters in integer arrays. This permit us to use asynhronous prefeth operations in theluster_mathing algorithm in order to redue the number of synhronous ahes misses whih diretlya�et response time.2For simpliity of presentation, this ode assumes that the number of subsriptions is a multiple of UNFOLD. In pratie, weneed a small separate piee of ode to deal with a remainder of up to UNFOLD-1 subsriptions.6

www.manaraa.com

Mathing time: The subsriptions are grouped in luster lists aording to their aess prediates.Subsriptions in the same luster list an math only events that verify the luster list aess prediate. Thislustering permits the algorithm to hek only those subsriptions whose aess prediate is veri�ed. Theperformane hallenge is to de�ne aess prediates so that eah inoming event has to be mathed againstonly a minimal number of lusters. Equality prediates ontained in subsriptions are good andidates foraess prediates. First, heking these prediates inurs no additional ost sine they are already hekedin the �rst step of the algorithm when omputing the bit vetor. Seond using these prediates as aessprediates permits us to guarantee an exlusive aess to lusters that are aessed using equality prediateson the same attribute. This redues signi�antly the number of luster to aess per event making theproessing time sub-linear with the number of subsriptions. For example, onsider a simple workload thatonsists of n subsriptions ontaining an equality prediate on the same attribute A. If we assume a uniformdistribution of equality prediates on A values, the average number of subsription heks per event havinga value for A would be n=DA where DA is the number of distint equality prediates on A ontained inthe workload. Besides using equality prediates, a natural idea to limit the number of subsription heksis to use aess prediates that are onjuntions of equality prediates. However, using multi-dimensionalaess prediates inurs additional spae and additional proessing osts sine additional index strutures(e.g., hash table) are needed to hek them. There is a lear trade-o� between the additional ost of hashingand the number of subsription heks that are saved. In setion 3 we propose a ost based approah toompute an optimal lustering using simple equality prediates and a onjuntion of equality prediates asaess prediates.Insertion and deletion of subsriptions: The algorithm for adding a new subsription s in thesystem is very similar to the event mathing algorithm. It onsists of two phases. First the algorithminserts prediates of s in the prediates indexes3. Then, the algorithm hooses an aess prediate for s andinserts s in the orresponding luster. The ost of insertion algorithm is lose to the event mathing ost.Indeed by using B_trees and/or hashing tables as indexes we an keep the maintenane ost of indexes loseto the retrieving ost. Moreover, inserting s in a luster simply requires to add a new entry at the end of eahprediates array and the subsription line of the luster. Deletions an be made fast by maintaining for eahsubsription the identi�er of the luster that ontains it. Besides the ost of insertion or deletion, addingor deleting subsriptions an make obsolete and ine�ient a previously optimal lustering. In the sameway, hanges in event patterns may degrade performane. In setion 4 we present an adaptive algorithmthat maintain an optimal lustering while supporting high rates of subsription hanges and inoming dataitems.3 Shema Based ClusteringThe shema based lustering onsists of (1) grouping the subsriptions in terms of their size, and aommon onjuntion of equality prediates as aess prediate and (2) using multi-attribute hashing to �ndthe subsription lusters. More preisely, given a lustering instane C, lusters of C are aessed using a setof multi-attribute hash tables alled a hashing on�guration. Eah table of the on�guration is assoiatedwith a set of attributes, alled its shema;, it allows one to aess lusters having prediates aess builtover this shema. A hashing on�guration H for a lustering instane C is suh that for eah luster of Cthere is a table in H having an entry referening .Example 3.1 Consider a olletion S of subsriptions and three independently distributed attributes A,B, and C that are mentioned by some of the subsriptions. Suppose that eah attribute has 100 values,and that all values for eah attribute are equiprobable. Suppose that there are 7 million subsriptions in S,3Indexes are updated only if s ontains a new prediate that is not already in the system.7

www.manaraa.com

and that every subsription in S has an equality ondition on at least one of A, B, and C. There are sevennonempty subsets X of fA;B;Cg. For eah suh X , suppose there are exatly 1 million subsriptions fromS with equality prediates on exatly the attributes X .Consider a lustering instane C1 involving aess prediates that are simple equality prediates on A,B, or C. Subsriptions mentioning more than one attribute with equality would be plaed in the lusterof one of them. If distributed uniformly, the population aessed by eah hashing table would be 2.33million subsriptions and eah luster would ontain 23,300 subsriptions. Consider C2 involving aessprediates that are simple prediates on A, B, C, and onjuntions of two equality prediates on AB andBC. Subsriptions with AC might be uniformly distributed between A and C, and subsriptions with ABCmight be uniformly distributed between AB and BC. Thus, the hashing table populations would be A: 1.5million; B: 1 million; C: 1.5 million; AB: 1.5 million; BC: 1.5 million. Sizes of the orresponding lusterswould be A: 15,000; B: 10,000; C: 15,000 ; AB: 150; BC:150.Now onsider the ost of mathing an event that mentions A and B but not C. In C1 we would needto onsult 1 of the A lusters and 1 of the B lusters, for a total ost of two hash table lookups and 46,600subsription heks. In C2, we would need to onsult (on average) 1 of the A lusters, 1 of the B lusters,and 1 of the AB lusters, for a total ost of three hash table lookups and 25,150 subsription heks. Basedon this analysis, we would expet the lustering instane C2 to be preferred for this kind of event. Notethat when we get to lusters having many equality prediates as aess prediate (say ABC) we expetjust one subsription to hek for an event mentioning A, B, and C. Further partitioning this luster (sayinto ABCD for those subsriptions with equality onditions on A, B, C, and D) would probably not beworthwhile beause it would add an extra hash table lookup while reduing the number of subsriptionheks by at most 1.The per event mathing ost of the algorithm an be deomposed in three main parts: the ost neededfor omputing the value of the prediate bit vetor, the ost of omputing the referenes of the relevantlusters, and the ost of heking the set of aessed subsriptions. As it is generally possible to buildseveral lustering instanes for a given set of subsriptions, and the two later osts are sensitive to the waythe subsriptions are lustered, the problem is to hoose the most e�ient lustering. In this setion wedesribe a ost-based approah to ompute optimal (shema based) lusterings for our mathing algorithm.The hoie of the lustering is based on a ost funtion using statistis over the subsriptions and the events.The setion is organized as follows. We �rst preise the notions of aess prediate, hashing on�gurationand lustering instanes. Then we give the mathing ost and spae ost inurred by mathing a set ofsubsriptions using a given lustering. Finally we pose the lustering problem in term of minimization ofthe mathing ost under spae onstraint, we enumerate the searh spae and we propose a greedy algorithmthat produes a loally optimal solution.3.1 Multi-attribute lusteringWe onsider aess prediates de�ned as a onjuntion of equality prediates. Anaess prediate isde�ned by a pair < id; pred > where id is an identi�er, and pred is a set of equality prediates whih arepairwise di�erent over their attributes. The set of attributes ourring in pred is alled the shema of thethe aess prediate.Hashing on�guration: Let AP be a set of aess prediates. In order to test these prediatesagainst inoming events we use one (or several) multi-attribute hashing strutures. Eah hashing strutureis intended to hek prediates having a ertain shema. More preisely: A multi-attribute hashing strutureover a set of aess prediates is de�ned by a pair < A; h > where A is a set of attributes alled the shemaof the struture, and h is a hash funtion whih takes an event, and returns the identi�er of the aessprediate (if it exists) having A as shema, and whih is satis�ed by e. We all a hashing on�guration for8

www.manaraa.com

a set of aess prediates AP the set of hashing strutures H = {< A1; h1 >, .., < An; hn >} that oversall shemas of aess prediates in AP . We all shema of the on�guration H the set {A1, .., A�n} of theshemas of the tables in H.Clustering instane: Given S a set of subsriptions we group the subsriptions using aess predi-ates. A subsription luster is de�ned by a triplet < id; p; subs > where id is an identi�er, p is an aessprediate, and subs is a set of subsriptions suh that eah subsription ontains all the prediates ourringin p. We all lustering instane for S a set C of lusters over the subsriptions of S suh that eah sub-sription of S appears in one and only one luster of C. In the following we note C(s) the luster ontainingsubsription s, and AP (C) the set of all the aess prediates to the lusters of C . Given an aess prediatep of AP (C), we note lusters(C; p) the set of lusters having p as aess prediates, (note that these lustersdi�er from eah others by the size of their subsriptions). Finally, we all hashing on�guration for C thehashing on�guration overing AP (C).3.1.1 Mathing ost of a lustering instane:Assume from now that we have a set S of subsriptions, a lustering instane C for S and H the assoiatedhashing on�guration. The ost of mathing an event on S using C inludes (1) the ost for retrieving therelevant multi-attribute indexes for the event, (2) the hashing ost for eah relevant table, and (3) the ostfor heking the aessed subsriptions.Thus the per event luster ost mathing is given by:mathing(S;C;H) = index_retrieving(H) + XH2H�(H)hashing(H)+ Xp2AP (C) �(p)(X2luster(C;p) heking(p;))where index_retrieving(H) is the ost for retrieving the indexes, �(H) is the probability that the shemaof the inoming event inludes the shema of H , hashing(H) is the ost of running the hashing funtion ofH , �(p) is the probability for an event to satisfy the aess prediate p, andP2luster(C;p) heking(p;) isthe total ost for heking the subsriptions in the lusters set having p as aess prediate. heking(p;)is the heking ost for one luster. It takes into aount the fat that the group of prediates in p is alreadyheked, so only the remaining prediates have to be heked.In the following we assume that : (1) the ost for retrieving the relevant indexes is linear with thenumber of strutures in the hashing on�guration. (2) the hashing ost is independent from the size of thehashing struture but linear with the size of the shema of the hashing struture, (3) the ost of hekinga set of subsriptions is linear with the number of subsriptions. All these assumptions are onsistent withour implementation. Using these assumptions leads to the following simpli�ed ost formula:mathing(S;C;H) = Kr� j H j +XH2H�(H)(Ch +Kh� j H:A j) +Xs2S �(C(s):p) � heking(C(s):p; s)Where j H j, and j H:A j represent the number of indexes and the size of the shema of H respetively, Kr,Ch and Kh represent three onstants, C(s) is the luster ontaining s and C(s):p is its aess prediate.3.1.2 Spae ost of a lustering instane:The spae ost of a lustering instane C on S using the hashing on�guration H inludes (1) the ost forstoring hashing strutures to AP (C) (2) the ost for storing lusters.9

www.manaraa.com

Thus the spae ost is given bySpae(S;C;H) = XH2H(init_spae(H) + Xp2AP (H:A)hash_spae(H; p)) + X2luster(C) luster_spae(:p;)where init_spae(H) is the initial spae neessary to reate an empty hash table. hash_spae(H; p) is thespae neessary to manage an entry for aess prediate p in hashing struture H . luster_spae(:p;)is the size of luster . Regarding the data strutures for lusters (see 2) this size is equal to Kspae �Ps2 size(s� p:preds) where Kspae represents a onstant.3.2 Computing the best lustering instaneGoal: Let S be a set of subsriptions, the problem is to �nd the lustering instane for S, thatminimizes the luster heking ost depited above under the onstraint that the total spae oupied bythe subsriptions lusters and the hashing strutures is less than a given amount of (main memory) spae.An exhaustive algorithm would examine all the possible lustering instanes. In suh approah, thealgorithm builds eah lustering instane by piking out one possible prediate group for eah subsriptionand �nds the assoiated mathing ost and spae. So, the number of lustering instanes examined by anexhaustive algorithm is �s2S(2jP (s)j) = 2jSjP where j P (s) j is number of equality prediates of s, P is theaverage number of equality prediates per subsription and, j S j represents the number of subsriptions.Suh omplexity makes the exhaustive algorithm impratiable. We propose a greedy algorithm whoseworst ase omplexity is j S j �(j GA(S) j)2 where j S j represents the number of subsriptions, GA(S) isthe set of the attribute groups ourring in subsriptions of S and j GA(S) j represents the ardinality ofGA(S); this number is bound by 2jAj where A denotes the set of attributes ourring in equality prediatesof S. Our algorithm starts from a �natural� lustering that onsists in grouping the subsriptions usingsimple equality prediates as aess prediates. Indeed using these equality prediates as aess prediatesinurs no additional hashing (and spae) ost sine hashing strutures are already de�ned and used forthe prediate testing phase of the global mathing algorithm 2. Then we improve this initial lustering byde�ning additional multi-attribute hash tables. The additional tables are hosen inrementally step by step.At eah step we use a bene�t funtion to deide whih hash table to add. The bene�t funtion is basedon the notion of best lustering instane for a hashing on�guration shema. We �rst explain this notion,then we give the bene�t funtion and desribe the algorithm. Our algorithm produes a loal optimum.Experimental results in setion 6 show the mathing time improvements realized through this algorithm.3.2.1 Best lustering instane for a hashing on�guration shema.Let S be a set of subsriptions, A a hashing on�guration shema for S and C(A) the set of all the lusteringinstanes having A as hashing on�guration shema. We all best lustering instane for A a lusteringinstane that gives the best mathing ost among all lustering instanes in C(A). Suh lustering instanean be built by iterating over S and hoosing for eah subsription s in S the prediate aess p in GP (s)\Athat minimizes �(p) heking(p; s). Indeed, mathing ost formula 3.1.1 shows that two lustering instanesassoiated with a same hashing on�guration shema only di�er over the total heking ost (see line 3 ofthe formula). In the following we note best(S;A) a best lustering instane for A, bestost(S;A) the ostof suh best lustering instane and Spae(S;A) its spae ost.3.2.2 Bene�t of a hoie of an additional hashing strutureLet S be a set of subsriptions, H a hashing on�guration for S and A its shema. The mathing bene�t ofadding a hashing struture H of shema A to H with respet to H is denoted by B(S;A; A) and is de�ned as10

www.manaraa.com

bestost(S;A)� bestost(S;A[fAg). The spae ost of adding H is denoted by DS(S;A; A) and is de�nedby Spae(S;A [fAg) - Spae(S;A) if Spae(S;A[fAg) > Spae(S;A) and 0 otherwise. The bene�t perunit spae of adding a hashing struture of shema A is 0 if B(S;A; A) � 0 and B(S;A; A)=DS(S;A; A)otherwise. Bene�t per unit of spae may be in�nite if mathing bene�t is stritly positive and DS is 0 (i.e., some spae is saved).3.2.3 The Greedy algorithmThe algorithm is desribed bellow. It takes as input a set S of subsriptions, and Maxsize a spae on-straint and returns a hashing on�guration shema and the assoiated best lustering instane that �ts intoMaxsize.given :S, a set of subsriptions, and Maxsize, the spae onstraint.GA = GA(S)A0 = ffAg j A is an attribute involved in some equality prediate in S}A = A0C = best(S;A)while(Spae(S;A) < Maxsize)Among all shemas in GA�A let B be a shema whih hasthe maximum positive bene�t per unit spae with respet to A.if B does not exist then return(A,C)else A = A [fBgC = best(S;A)endifend whilereturn (A,C)4 Dynami ClusteringThe goal of lustering is to minimize the number of subsription heks. In the stati approah presentedabove, lustering deisions are taken given the global knowledge of all subsriptions in the system and theknowledge of statistis about inoming event streams. But subsription and event patterns may hangeover time degrading an initial optimal lustering. To ope with this problem a �rst solution onsists inperiodially reomputing from srath a lustering instane that is adapted to the new situation. Dueto the omplexity of this reorganization, this solution is well suited for appliations where subsriptionsand event patterns are relatively stable during large time intervals. But this stati approah is learlyimpratiable when patterms are evolving ontinually.In this setion we desribe a dynami lustering algorithm that inrementally adapts lustering to hangesin subsription and event patterns. Our algorithm dynamially deides (1) when to redistribute subsriptionsfrom a given a luster to other more pro�table lusters, (2) when to delete a hash table and redistribute itssubsriptions and, (3) when to reate a new hash table and what table to reate.These deisions rely on three metris alled bene�t margin, absolute bene�t and, reparation power. Aluster is redistributed when its bene�t margin beomes high. A hash table is removed when its absolutebene�t is too small and a new table is reated when its reparation power is su�iently high. We �rst givede�nition of these metris and show the use of these metris to haraterize the urrent state of a lusteringinstane. Then we desribe the maintenane algorithm. This algorithm is parametrized by thresholds settingminimal values for absolute bene�t and reparation power and maximal values for bene�t margin. Finally11

www.manaraa.com

we disuss the maintenane ost and the impat of thresholds over the tradeo� between maintenane ostand mathing ost.Absolute bene�t: Absolute bene�t measures the average number of heks that are saved for a givenlustering instane ompared to the ase where no aess prediate is used. Let C be a lustering instane, a luster in C, and s a subsription in . The absolute bene�t of s in is equal to (1� �(p)) where pis the aess prediate of and �(p) is the probability that an inoming event satis�es p. Indeed, whenin luster , subsription s is heked with a probability �(p) instead of being systematially heked if noaess prediate were used for s. The absolute bene�t of a luster is the sum of all the bene�ts of itssubsriptions and is equal to (1 � �(p))� j j. The absolute bene�t of a hash table H is the sum of theabsolute bene�ts of its lusters and is equal to P2H(1� �(p))� j j.Bene�t margin: The bene�t margin fouses on the number of heks that ould be saved from agiven lustering instanes if all possible aess prediates were used. Let C be a lustering instane aluster in C and s a subsription in . The bene�t margin of s in is equal to (�(p)� �(P (s))) where p isthe aess prediate of , P (s) is the maximal group of equality prediates of s and, �(p) and �(P (s)) arerespetively the probability that an inoming event satis�es p and P (s). The rationale for this is that P (s)is a superset of p. The bene�t margin of a luster is the sum of all the bene�t margin of its subsriptionsand is equal to Ps2(�(p)� �(P (s)).Reparation power: Let C be a lustering instane and H its assoiated hashing on�guration. Thereparation power of hash table that is not in H and with respet to a set of lusters C 0 in C is the absolutebene�t that ould be obtained by moving subsriptions from lusters to H . This bene�t is equal toPs2Dmove(H;C0)(1 � �(pHs)) where Dmove(H;C 0) is the set of subsriptions whih are in a luster of C 0and suh that �(p) � �(pHs) where pHs is the new aess prediate for s in H and p is the aess prediateof .Algorithm Metris: In order to use metris that are not ostly to ompute we use as metris anapproximation of the parameters above. This approximation is based on the fat that seletivity of equalityprediates is usually (very) low. Thus we haraterize the urrent state of the lustering instane as follows:� For eah luster the approximate bene�t margin of is noted BM() and is de�ned as �(p) j j� For eah hash table H , its approximated bene�t is noted B(H) and is de�ned as j H j� For any potential hash table H for a set of lusters C 0 its approximated reparation power is notedRP (H;C 0) and is de�ned as j Dmove(H;C 0) j.4.1 Maintenane AlgorithmMaintenane algorithm is parametrized by three threshold values: BMmax, Bmin and RPmin. Themaintenane algorithm will at in two situations: (1)The Cluster bene�t margin of a luster rises to BMmaxand (2)The bene�t of an existing hashing table falls below Bmin. The bene�t margin of a luster mayinrease for two reasons: There is an insertion of a subsription in and, there is an inrease of the seletivity�(p) of the aess prediate of . The bene�t of a hash table may derease when subsriptions are deleted.In our implementation these metris are updated at eah insertion and deletion of a subsription. We alsoassume that an independent tool periodially provides statistis over events streams and their impat onaess prediate seletivity.The algorithm is desribed bellow. Ations undertaken by the algorithm to ope with situation (1)and (2) are twofold and are performed in two distint phases. At a �rst phase the maintenane algorithmattempts a redistribution of subsriptions. When dealing with a luster with exessive bene�t marginthe algorithm tries to redistribute eah subsription s of into another existing table that maximizes the12

www.manaraa.com

absolute bene�t of s. When dealing with a table H with an insu�ient absolute bene�t the algorithmremoves H and redistributes its lusters. Redistribution of lusters is performed by redistribute() funtion.This funtion is reursive. Indeed, as redistribution indues insertions in other lusters it may reursivelyindue redistribution of other lusters. Redistribution terminates when there is no more subsription tomove. Sine a subsription is moved at �rst try toward its best table, subsriptions annot be moved morethan one. When no more subsriptions an be moved, it may happen that some lusters have still anexessive bene�t margin. Funtion redistribute returns these lusters. These lusters are andidate to theseond phase of the algorithm for reparation. The goal of the seond phase is to �nd some additional hashtables able to redue this remaining bene�t margin.This reparation phase takes as input the set of lusters to repair returned by �rst phase. New tablesare hosen in terms of their reparation power w.r.t. the bene�t margin to solve. The algorithm onsidersonly andidate tables able to reeive subsriptions from the input lusters. It �rst updates their reparationpower. Then it selets and reates tables whih umulates a su�ient reparation power up to RPmax. Itmay happen that some luster sent by �rst phase annot be repaired immediately due to the fat that thetables that ould repair it do not have umulated a su�ient reparation power. Nevertheless the lusterontributes to inrease their reparation power that ould beome su�ient after several iterations of phaseone. As soon as one of these tables is reated, luster subsriptions are moved to it.Maintenane Algorithm:given :C the urrent lustering instane and H its assoiated hashing on�gurationPH a set of andidate hash tables that are not in HPHASE 1: RedistributionON SITUATION_1() /* A luster has an exessive bene�t margin*/andidate_phase2 = redistribute(; C)ON SITUATION_2(H) /* A table H has an insu�ient bene�t */H = H -H;Foreah subsription s in H domove s toward the luster in H�H that maximizes bene�ts of s;ENDForeahForeah luster that reeived subsriptions due to the deletion of H doIf SITUATION_1() then andidate_phase2 + = redistribute(; C) ENDIfENDForeahForeah luster that was deleted due to the deletion of H doIf SITUATION_1() then add to deleted_lusters ENDIfENDForeahPHASE 2: Creation of new hash tablesForeah in deleted_lusters doForeah table H in PH \GA() doupdate reparation power of H w.r.t deletion of remove from andidate_repair(H)ENDForeahENDForeahForeah in andidate_phase2 doForeah table H in PH \GA() doupdate reparation power of H w.r.t add to andidate_repair(H)ENDForeahENDForeah 13

www.manaraa.com

While(SITUATION_3) /* there exists a andidate table with a su�ient reparation power*/Choose a table H that has a su�ient reparation powerH= H [fHgmove to H all subsriptions in andidate_repair(H) that have a better bene�t in Hupdate all metrisENDwhile/* S3 */Besides the ost of maintaining eah hash table, the maintenane ost is proportional to the number ofsubsription moves. When a new subsription s arrives the insertion algorithm hooses always the hash tablethat gives the best absolute bene�t for s. However s may move to another hash table during its lifetime if(1) deletion of other subsriptions make insu�ient the bene�t of its hash table or, (2) insertions or hangesin event statistis inrease the bene�t margin of the luster of s and triggers the reation of a hash table thatis better for s. Choie of threshold values learly impats on the number of moves. Indeed, Bmin impatson the number of hash table deletions. BMmax impats the amount of lusters andidate for new hashtables. Finally, RPmin impats the number of hash table reations. In terms of mathing ost, BMmaxquanti�es the pro�tability of hanging a luster. More preisely it indiates an aeptable luster hekingost under whih no luster reorganization is pro�table. For example if a luster has a large size but isvery rarely heked its bene�t margin �(p)� j j may be small enough to deide that its average hekingost is aeptable and will never andidate to reorganization. In the same spirit RPmin quanti�es thepro�tability to reate a new hash table. Bmin quanti�es the pro�tability to maintain an existing hash tablein the lustering on�guration. In setion 6 we study the performane of the maintenane algorithm bothin terms of improvements of mathing ost and maintenane ost.5 Related workA lot of main memory mathing algorithms have been proposed in the ontext of ontent based pub-lish/subsribe systems [1, 8, 11℄, and triggers [6℄. At the basis of these algorithms there are two maintehniques.The former one onsists in two phase algorithms whih test the prediates during a �rst step, thenompute the mathing subsriptions using the results of the �rst step. Our proposal is a two phase algorithm.We an also ite [12, 8, 9℄. Neonet[8℄ uses a version of ounting algorithm for the seond step. Theounting algorithm onsists in �ounting� for eah subsription its number of hits, i.e. its number of satis�edprediates. To ahieve this, the algorithm maintains an assoiation table giving for eah prediate, thesubsriptions where it ours. Eah time a prediate is satis�ed, the ount of the orresponding subsriptionsis inremented. SIFT[12℄ is a SDI system allowing users to subsribe for douments by speifying a set ofweighted keywords. Eah keyword orresponds to a prediate keyword in the doument. In a �rst step, thedoument is parsed for �nding keywords, and then the best mathing subsriptions are omputed using asimilar ounting approah. Mathing algorithm proposed by Pereira et al in [9℄ uses a similar approahto our algorithm. This algorithm groups subsriptions with respet to their number of prediates (as ouralgorithm does). But it doesn't use prefething for optimizing the seond step of the algorithm, and it onlyuses single prediates as grouping riterium. Our performane evaluation bellow shows the bene�t of usingprefething and multi-attribute hashing tables.The seond tehnique onsists in ompiling subsription prediates in a test network ala A_TREAT[5℄(that ould be a tree struture). Internal nodes represent tests (i.e. prediates), the leaves of the networkontain referenes to subsriptions. Events enter the network at the root of the network they are tested atinternal nodes progressing from node to node if node test sueeds. Event having suessfully satisfy all thetests along a path reahes a leaf and obtain by referene the mathing subsriptions. In these algorithms,eah subsription an appear in only one leaf (as proposed in Aguilera et al [1℄), or may appear in several14

www.manaraa.com

leaves (as in Gough[4℄). In the �rst ase an inomming event only have to follow one path in the tree. Whilein the seond ase it generally have to follow several paths. Therefore the �rst solution is more e�ientbut it is very spae onsumming. The algorithm proposed by Aguilera et al is used in the Gryphon system.When ompared with the two phase approah, these algorithms su�er of several drawbaks. First theyhave a bad temporal and spatial loality, seond they are spae onsumming, third the test network datastrutures are omplex and ostly to maintain with respet to insertion and updates of subsriptions makingthese solutions not well suited for high rates of subsription hanges.Algorithms above are designated for onjuntions of (attribute, omparison operator, onstant) predi-ates �ltering event ontent. Triggerman and NiagaraCQ address respetively the problem of trigger ondi-tion and ontinous queries evaluation. They both optimize onditions that ombine prediates on inommingevent with prediates on a urrent database state. In both ases the algorithm works in two steps. the�rst step is a �ltering step over the ontent of inomming events in order to selet the database onditionswhih are andidate to a omplete evaluation. During the seond step, andidate onditions (resp. queries)are evaluated using global optimization tehniques. However, the more disriminating the �ltering step,the less the amount of omputation of the evaluation step. In NiagaraCQ database queries are evaluatedusing a global multi-query plan inluding split operators where queries are grouped aording to ommonprediate signatures 4. Only the most seletive signature (usually a seletion prediate with equality op-erator) is hosen for initial �ltering, other seletions are performed further in the plan. TriggerMan usesa A_TREAT network to evaluate onditions. Its �ltering step is more sophistiated than in NiagaraCQsine it an onsist in onjuntions of equality prediates signatures. Both use index tehniques to improve�ltering through equality prediates. Our algorithm works on any onjuntion of equality and inequalityprediates over event ontent. It ould be used to enhane the �ltering phase of TriggerMan and NiagaraCQby permitting more powerful event �ltering that uses together equality and inequality prediates. Eah sub-sription in our algorithm would be an entry point in the ommon query plans (network for TriggerMan)that would only onsist in joins and splits operators. Even when �ltering is limited to equality prediatesour ost based algorithms an improve performane by hoosing the best multi-key index on�guration.Indeed the performane experiments in the next setion show that the best index on�guration is neitherthe one onsisting in hoosing simple equality prediates (as NiagraCQ does) nor the one onsisting insystematially hoosing the maximal onjuntions of equality prediates. We show that using ost basedalgorithms we an approah the best on�guration.6 Performane EvaluationIn this setion we evaluate the performane of our algorithm and ompare the e�et of our lusteringstrategies. We onsider three versions of our algorithm: The simple propagation algorithm use only singleequality prediates as aess prediates. To evaluate the e�ets of the PREFETCH ommand (see setion 2we ompare two implementations of the propagation algorithm: propagation does not use prefething whilepropagation_wp does use prefething. The stati algorithm and the dynami algorithms use a lusteringstrategy that takes advantage of onjuntions of equality prediates. With the stati algorithm the lusteringis build statially using the ost based algorithm depited in setion 3. In the dynami Algorithm luster-ing is inrementally maintained using the maintenane algorithm depited in setion 4. Both algorithmsare implemented with prefething. Finally for omparison with (part of) related work we implementedthe ounting algorithm (see 5) sine it is used in many publish/subsribe systems. All algorithms areimplemented in our publish/subsribe system prototype. The system is evaluated under various simulatedworkloads, aounting for subsriptions and events emitted to the system. Our experimental results showthat our algorithms are able to handle a large number of subsriptions (several millions) and a high rate of4i.e, (attribute, omparison operator) for seletion prediates and (attribute1, omparison operator, attribute2) for joins.15

www.manaraa.com

events (up to thousand events per seond). A more detailed analysis of the harateristis of the variousalgorithms is presented below.6.1 Experimental Setup and Workload GenerationWe ran all experiments on a single-CPU Pentium workstation with an i686 CPU at 500MHz and 1GBRAM operating under Linux. The publish and subsribe system runs as a proess on this workstationwaiting for subsription and events to proess. Subsriptions and events an be submitted to the systemat any time. We implemented a workload generator that, aording to a workload spei�ation, emitssubsriptions and events to the publish/subsribe system. The workload generation task ran as a separateproess on the same workstation as the publish/subsribe system. Subsriptions and events are emitted tothe system in �xed-size bathes. The bath size may be set in the workload spei�ation.In order to evaluate the mathing algorithms under a high number of subsriptions and high event ratewe have developed the following evaluation framework.5Subsriptions and events are drawn randomly aording to a workload spei�ation that determinessubsriptions, prediates, events, and attribute names. A subsription workload spei�es the total numberof subsriptions to generate nS , a bath size nSb , that determines the number of subsriptions to submitto the system at one, the number of prediates per subsription nP , the number of prediates �xed persubsription nPfix (broken down in nPfix= , nPfix> , and nPfix< , i.e., the number of prediates with therespetive operators), and a prediate workload spei�ation.Prediates are determined by a name, an operator, a value domain, and the domain's ardinality. Thevalue domain may be spei�ed per prediate or one for all prediates. It determines the value of a prediateand is spei�ed with a lower and upper bound, lP and uP , respetively. Values are drawn from this domaingoverned by a uniform distribution. Prediate names are drawn from the prede�ned set of attribute names.The same set of attribute names is used to draw attribute names for events. The total number of namesavailable is determined by nt.Analogously, events are determined by the number of events to generate nE , the bath size of events tosubmit to the system at one nEb , the number of attribute value pairs within the event nA, the number ofattributes �xed nAfix (same breakdown as for subsriptions), and the value domain, determined by a lowerand an upper bound, lA, uA, respetively. Values are drawn uniformly distributed from this domain. Forall experiments we use intervals of positive integers as value domains.The following determinants are used to in�uene the mathing behavior of the algorithms in a proba-bilisti sense, i.e., to ontrol the number of mathed subsriptions for a given workload spei�ation and todetermine parameter settings for the workload generation spei�ations.The event attribute data skew determines the distribution of attribute values of events. It may bespei�ed di�erently for eah attribute in the event, (in the following referred to as event skew.)The subsription prediate data skew determines the distribution of prediate values. It may be spei�eddi�erently for eah prediate in the subsription, (in the following referred to as subsription skew.)The orrelation between subsription and event skews determine the overlap of prediate and attributevalue domains. In modifying this orrelation the number of events mathed for a given workload spei�ationan be in�uened. This is neessary to evaluate the algorithmi behavior of the di�erent mathing algorithmsat di�erent points in their state spae. It is also required to ross-validate the mathing behavior of thealgorithms. The workload parameters that �x a ertain number of prediates (respetively attributes) serve5It would be very resoure intense to evaluate the algorithms with a pre�omputed workload, where we know the numberof events mathed per subsription on�guration. We resort to a simulated workload, where subsriptions and events aredrawn randomly aording to a workload spei�ation. The spei�ation allows us to in�uene the mathing behavior of thealgorithm in a probabilisti sense (a priori determine the number of mathes for a given workload spei�ation).16

www.manaraa.com

to determine the number of di�erent subsription shemas that are generated on average6.Table 1 summarizes the workload spei�ation parameters and their values for our experiments.Parameter Desription RangeGlobal parametersnt total number of prediate / attribute names 32Subsription and prediate determining parametersnS total number of subsriptions 100.000 - 6.000.000nSb number of subsriptions to submit to the system at one 10.000nP number of prediates per subsription 3 - 16nPfix number of prediates �xed per subsription 2 - 8lPi , uPi limits of value domain of prediates (per prediate i) 5 - 100Event determining ParametersnE number of events ...nEb number of events to submit to the system at one 100nA number of attribute value pairs per event 32nAfix number of attributes �xed 32lA, uA limits of value domain of attributes 5 - 100Table 1: Parameter de�nitions and range values.To evaluate and ompare the performane of the di�erent algorithms we use the following metris:overall system throughput, memory size, and system update time. The overall system throughput measuresthe number of events proessed per unit of time for various on�gurations of the system. The memorysize aptures the resident memory size of the publish/subsribe system proess, separately for the di�erentalgorithms, at di�erent system states. System update time measures the time it takes to submit updates(insertions and deletions) to the publish/subsribe system.Timings are taken in mill-seonds within the workload generating proess, just before events or subsrip-tions have been submitted to the publish/subsribe system proess and right after the system responds. Thesystem responds to event submissions with the noti�ations that ontain the IDs of mathed subsriptions.The timings therefore inlude the interproess ommuniation times and individual timings aount for theproessing of an entire bath of subsriptions or events submitted.We ran several experiments multiple times and did not notie a signi�ant di�erene in the results. We,therefore, do not report varianes in our �gures, whih were lower than 0.1%, for the experimental runsrepeated.6.2 Experiments6.2.1 Total System Throughput and System SalabilityIn this series of experiments we assume that the publish/subsribe system is subjet to a large number ofsubsriptions, that these subsriptions stay in the system for a long time, and that the system must handlea high rate of events. These are the basi assumptions upon whih we designed the mathing algorithms.This also represents the key requirements under whih, we assume, our system will have to operate.We demonstrate the total system throughput for a given number of subsriptions aross all algorithms.We also evaluate the salability harateristis of our system, i.e., its performane in terms of event through-put with an inreasing number of subsriptions to proess. We further measure the memory utilization andthe time it takes to proess a onstant number of subsriptions by the system (i.e., system update time).Figure 3 (a) ompares overall system throughput aross all algorithms. The following workload spei�-ation was used: W0 = (nt = 32, nP = 5 (2 �xed, all equality), nA = 32 (all �xed), value domain: (l = 1,6This number may be alulated ombinatorially as follows: (nt�nPfix)!(nt�nP)!(nP�nPfix)! .17

www.manaraa.com

1

10

100

1000

10000 100000 1e+06 1e+07

m
a
tc

h
in

g
 t
im

e
 i
n
 m

s

number of subscriptions

matching process time per event

counting
propagation

propagation_wp
dynamic

0

0.5

1

1.5

2

2.5

3

3.5

0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06

m
a
tc

h
in

g
 p

ro
c
e
s
s
 t
im

e
 i
n
 m

s

number of subscriptions

matching process time per event

dynamic W1
dynamic W2

propagation_wp W1
propagation_wp W2

(a): nP=5, nPfix = 2, nS varies (b) nP=(4; 9), nPfix = (3; 8), nS varies

0

100000

200000

300000

400000

500000

600000

700000

800000

0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06

m
e
m

o
ry

 i
n
 K

 b
y
te

s

number of subscriptions

resident memory size

counting
propagation

propagation_wp
dynamic

0

1e+06

2e+06

3e+06

4e+06

5e+06

6e+06

7e+06

8e+06

9e+06

1e+07

0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06

ti
m

e
 i
n
 m

s

number of subscriptions

subscription loading time

counting
propagation

propagation_wp
dynamic

static

(): nP=5, nPfix = 2, nS varies (d): nP=5, nPfix = 2, nS variesFigure 3: event mathing proessing time, memory resident size and subsription loading time for the severalalgorithms.u = 35) (no skews), nSb = 10:000, nEb = 100) (the same workload is used in Figures 3() and 3(d)). Asexpeted, the dynami algorithm shows the best performane, while the ounting algorithm is the leastperformane. The performane of the propagation algorithms lies in between these two. The prefethingtehnique applied in the implementation of one of the propagation algorithms improves its performaneadditionally by a fator of 1.5 for large numbers of subsriptions. For instane, mathing 100 events against6.000.000 subsriptions takes on the average 90377 ms (ounting), 804 ms (propagation), 509 ms (propaga-tion with prefething) and 166 ms (dynami). A notable feature of the dynami algorithm is the fat thatthe mathing time is kept independent from the number of subsriptions. This nie behavior is ensured bydynamially reating new hashing tables when the size of lusters beomes too large. We also ran experi-ments to ompare the dynami algorithm with the stati algorithm. Stati algorithm produed lusteringinstanes that were very similar to those obtained by the dynami (one or two additional hashing tables)and did not signi�antly beat the dynami algorithm (few ms per 100 events). This shows that the metrisused in the dynami algorithm provide a good approximation of lustering bene�ts.All algorithms we implemented work in two phases. The �rst phase onsists in to determining allprediates mathed by an event, the seond phase onsists in to determining all mathed subsriptionbased on the information gained in the �rst phase. Prediate mathing is done by the same funtion forall algorithms. Propagation and dynami algorithms are designed to optimize the seond phase. In ourexperiments, we separately measured eah phase. The 166 ms used by the dynami algorithm for mathing18

www.manaraa.com

100 events are spent as follows: All satis�ed prediates are disovered in 130ms, this inludes the time toproess events (i.e., parse arriving events et.). All mathing subsriptions were found in 10 ms. The restof the time was spent ommuniating the IDs of mathing subsriptions bak to the lient proess. Thepropagation (with prefething) algorithm spends the same time for prediates heking and ommuniationbut its subsription mathing time inreases with the number of subsriptions (from 10ms with 100.000subsriptions to 353ms with 6.000.000). Prediate mathing performane may still be improved for allalgorithms, if highly optimized index struture on prediate domains are used. Our primary goal has beento highly optimize the subsription mathing phase, as tehniques of the former are well known.Figure 3 (b) ompares overall system throughput of the dynami algorithm and the propagation withprefething algorithm for di�erent kinds of operators in prediates. The workload spei�ations 7 were set asfollows: W1 = (nS = 3:000:000, nP = 4, nPfix= = 2, nPfix> = 1 and one none �xed prediate with equalityoperator, hosen freely among the nt = 32 unused prediate names) and W2 = (nS = 3:000:000, nP = 9,nPfix= = 2, nPf ix< = 5, nPfix> = 1 and one none �xed prediate with equality operator, hosen freely amongthe nt = 32 unused prediate names). The results show that both algorithms are sensitive to non-equalityprediates. Their performane dereases by a onstant fator as more non-equality prediates (i.e., W2 vs.W1) are being proessed. The number of satis�ed non-equality prediates omputed in the �rst phase ofthe algorithms is greater in W2 as more non-equality prediates are being generated in the workload. Theperformane di�erene of both algorithms is equal. This is due to the fat that both algorithms use thesame luster propagation algorithm to handle non-equality prediates. In this algorithm bit vetor entriesassoiated to inequality prediates of a given subsription s are heked only if all equality prediates of sare veri�ed. Sine both algorithms are tested on similar subsription workloads the probability that suhsituation arises is the same for both of them. Performane gain of the dynami algorithm, as shown in theleft �gure is due to its improved handling of equality prediates via multi-attribute hash tables.Figures 3() show memory utilization (�rst �gure) and subsription loading time (seond �gure) arossall algorithms. The individual graphs follow the natural intuition (inreased proessing time and memoryuse, due to inreased data proessing and storage needs). In terms of memory utilization, the propagationalgorithms (both use the same internal data strutures) require the least amount of memory, losely followedby the ounting algorithm, while the dynami algorithms requires the most. The multi-attribute hash-tablesused in the dynami algorithm let it use the most memory. The subsription load time (f. Figure 3(d)) issmallest for the ounting algorithm, whih deploys very simple data strutures, and highest for the statialgorithm, that statially omputes from srath an optimal lustering on�guration. Compared to Statialgorithm, the dynami algorithm improves signi�antly the loading time by reorganizing inrementallyits internal data strutures during proessing to best suit the subsriptions enountered thus far. Theexperiments results depited in Figure 3(a) show that the mathing performane obtained with inrementallyomputed lusterings is as good as the ones obtained by the stati algorithm.6.2.2 In�uene of Number of Prediates and Size of Value DomainWe performed a series of experiments to test the in�uene of the number of prediates, the size of theprediate value domains, and the kind of prediate operators used in subsriptions. Due to spae limitations,we an only summarize our results here.We ran an experiment that inreased, in steps of 20, the size of the value domain of prediates, from10 to 100. We tested the performane of the dynami algorithm and the propagation algorithm on thisworkload8. We onlude that the more values in the domain, the better the performane of the algorithms.This is due to the fat that the higher the seletivity of eah domain the fewer subsription need to be7We only list values that di�er from the above workload spei�ation.8All other parameters of the workload being equal to the values above.19

www.manaraa.com

event maximal throughput

0

50

100

150

200

250

300

350

400

450

2 4 6 8 10 12 14 16 18 20
time in hours

ev
en

ts
 p

er
 s

dynamic strategy

"no change" strategy

event maximal throughput

0

100

200

300

400

500

600

2 4 6 8 10 12 14 16 18 20
time in hours

ev
en

ts
 p

er
 s

dynamic strategy

"no change" strategy

(a): Changing subsriptions shemas (b): adding subsription and event skewFigure 4: Evolution of event throughput under varying onditionsveri�ed. Furthermore, the dynami algorithm is less sensitive to this fator than the propagation algorithm.This is explained by the fat that the dynami algorithm an take advantage of multi-attributes aessprediates.To test the in�uene of the number of prediates we ran a series of experiments that inreased the numberof prediates in steps of twos, from 4 to 14. The onlusion here is that the more prediates per subsriptionthe better the performane of the dynami algorithm. On enountering subsriptions with many prediatesearly on, the algorithm will build hash tables with more aess patterns and therefore improve performane.6.2.3 Adaptivity to Subsription UpdatesUnder real world onstraints, publish/subsribe systems deployed on the Internet are likely to be subjetedto a onstant stream of subsription updates (e.g., modi�ations, insertions, and deletions) and events.Subsriptions and events are likely to hange in struture and ontent value distributions over time. Certainsimilarity patterns within neighboring elements in the streams may be observable. Subsriptions and eventsmay, for instane, hange in terms of their prediates' domains. Our dynami mathing algorithm aims athandling these onditions. In order to study its adaptive behavior in omparison to the other algorithms insuh a ontext we simulate these onditions in this set of experiments.In these experiments we onsider situations where the publish/subsribe system has to handle onur-rently inoming events and a high rate of inoming subsriptions. We assume a subsription has a livetime of about 16 hours. Given a subsription rate of 50 subsription insertions per seond, the system willhave to proess roughly three million events after aging subsriptions are deleted from the system. We saythe system reahes saturation.9 In the following experiments we investigate the behavior of our algorithmsat system saturation. In the experiments the system is �rst populated with three million subsriptionsaording to a workload spei�ation. At this state we remove 50 subsriptions (representing the 50 oldestones, inserted 16 hrs ago) and insert 50 new subsriptions every seond. If the system an manage theseinsertions and deletions in less than one seond, we use the remaining time before the next seond tik tosend events to the system and we measure the number of events the system an handle within the remainingtime. We measure system evolution aording to various appliation senarios where subsription and eventpatterns are hanging.The �rst experiment depited in Figure 4(a), investigates the impats of subsription shema hanges.This experiment models a situation where subsribers subjets of interest are hanging along the time.We start from a workload W_1 = (nt = 16, nS = 3:000:000, nP = 5, nPfix= = 1, nA = 32, lpi = lA= 1, upi = uA = 35) where all the 3.000.000 subsriptions fous on 16 of the 32 attributes available in916 � 3600 � 50sub=s = 2:880:000. 20

www.manaraa.com

the system and events provide uniform values for the 32 attributes. At saturation we use a lusteringon�guration that it optimal for W_1. During the �rst two hours subsriptions and events are followingworkload W_1. Then we insert subsriptions aording to a new workload W_2 similar to W_1 exeptit fouses on the 16 attributes that are not addressed in W_1. After 18 hours the system reahes a newstable state where all subsriptions in the system are following W_2. We ontinue to run the experimentduring two hours inserting and deleting W_2 subsriptions. Figure 4(a) shows the evolution of the averageevent throughput along the time (throughput is averaged every two hours) and ompares two oppositestrategies for lustering maintenane: The dynami strategy uses the Dynami algorithm to adapt lusteringto subsriptions hanges by reating (deleting) hashing tables. The No Change strategy does not hangethe initial (optimal) lustering on�guration. Figure 4(a) shows that the �No Change� strategy does notprevent performane to degrade when subsriptions shema are hanging. At the end the event throughputis divided by two. On the other hand the dynami strategy adapts the lustering to the new situation. Inthe last two hours when subsription patterns are stable again, the system an handle 350 events per seondinstead of 200 events per seond with �No Change� strategy. However during the transition phase, Dynamialgorithm performane is quite irregular. This is due to the additional maintenane ost that ours whennew hashing tables are reated. This ost is quikly ompensated by the mathing bene�t of the new tables.This makes dynami strategy most of the time better than �No Change� strategy.The seond experiment is depited in Figure 4(b). It investigates the impat of subsription skew whenit is ombined with event skew. This experiment models a situation where a same interest raises for bothsubsribers and publishers. Typial examples arise in news Dissemination systems: Few days before eletionof US president everybody may want to know about the andidates. At the same time, more and moreinformation is published on this subjet. To model this phenomena we built the following experiment. Westart from a workload W_1 = (nt = 32, nS = 3:000:000, nP = 5, nPfix= = 2, nA = 32, lpi = lA = 1,upi = uA = 35) where equality prediates and attributes values are uniformly distributed among 35 values.During the �rst two hours, subsriptions and events are following workloadW_1. Then after two hours wereate both event skew and subsription skew. All new events and new subsriptions are inserted aordingto a new workload W_2. W_2 is similar to W_1 exept there is a skew (2 di�erent values instead of35) on attribute values and prediates of one of the two �xed attributes used by subsriptions in W_1.After 18 hours the system reahes a new stable state where all subsriptions in the system are followingW_2. We then still run the system during two hours inserting W_2 subsriptions. Figure 4(b) shows theevolution of the average event throughput along time (every two hours) when using the dynami and theNo Change strategies. Figure 4(b) shows that the �No Change� strategy does not prevent performane todegrade when more skewed subsriptions are oming into the system. At the end, the event throughput hasredued by 20%. On the other hand the dynami strategy adapts the lustering to the new situation. Atthe end of the experiment when subsription patterns are stable the system an manage almost the samethroughput has before10. At the beginning of the transition phase the ost of maintaining lustering remainsslightly preponderant ompared to the mathing bene�t. But after 8 hours the mathing bene�t obtainedby lustering reorganization overomes the maintenane ost.7 ConlusionIn this paper we propose a main memory algorithm for �ltering event ontents with respet to on-juntions of (attribute, omparison operator, onstant) prediates. Our algorithm has the following nieproperties: (1) our algorithm is �proessor ahe onsious� in that it maximizes temporal and spatial lo-ality. Moreover we use tehniques that avoid ahe misses by using proessor PREFETCH ommand. (2)10Due to subsription and event skew, more subsriptions are mathed at the end of the experiment. This inurs an additionalost that annot be ompensated by lustering reorganization.21

www.manaraa.com

Our algorithm uses a shema based lustering strategy in order to minimizes the number of subsriptionheks. Subsription lusters are aessed through multi-attribute hashing tables.(3) Its lustering strategyis based on a ost model to ompute the optimal hashing on�guration and the orresponding lusters givenstatistis on inoming events. (4) We also propose a dynami algorithm to reate and remove lusters andhashing tables dynamially when the set of subsription is modi�ed (due to insertions and deletions) orwhen event patterns are hanging. (5) Performane studies show that our algorithm an support severalmillions of subsriptions and (very) high rates of events (600 hundreds event per seond for 6 Millions ofsubsriptions on a single-CPU Pentium workstation with an i686 CPU at 500MHz and 1GB RAM). (6)Performane studies also show that our algorithm an support high rates of subsription hanges.Our �ltering algorithm is implemented in a publish/subsribe system and already provides an e�ientsupport to a subsription language onsisting of DNF onditions on events. We also think that our algorithman be used as an e�ient (pre-)�ltering module in more powerful Publish/subsribe systems suh as SQLtriggers and ontinuous queries.Referenes[1℄ M. K. Aguilera, R. E. Strom, D. C. Sturman, M. Astley, and T. D. Chandra. Mathing events ina ontent-based subsription system. In Eighteenth ACM Symposium on Priniples of DistributedComputing (PODC '99), 1999.[2℄ J. Chen, D. DeWitt, F. Tian, and Y. Wang. Niagaraq: A salable ontinuous query system for internetdatabases. In In Pro. of the ACM SIGMOD Conf. on Management of Data, 2000.[3℄ P. Bernstein et al. The asilomar report on database researh. ACM Sigmod reord, 27(4), 1998.[4℄ K. J. Gough and G. Smith. E�ient reognition of events in distributed systems. In Proeedings ofACSC-18, 1995.[5℄ E. Hanson. Rule ondition testing and ation exeution in ariel. In Proeedings of the ACM SIGMODInternational Conferene on Management of Data, pages 49�58, 1992.[6℄ E. Hanson, C. Carnes, L. Huang, M. Konyala, L. Noronha, S. Parasarathy, J. Park, and A. Vernon.Salable trigger proessing. In Proeedings of the International Conferene on Data Engineering, pages266�275, 1999.[7℄ E. N. Hanson, M. Chaabouni, C. Kim, and Y. Wang. A prediate mathing algorithm for databaserule systems. In SIGMOD'90, 1990.[8℄ New Era of Networks In. http://www.neonsoft.om/produts/NEONet.html.[9℄ Joao Pereira, Françoise Fabret, François Llirbat, and Dennis Shasha. E�ient mathing for web-basedpublish/subsribe systems. In Pro. of the Int. Conf. on Cooperative Information Systems (COOPIS),Eilat, Israel, 2000.[10℄ Jun Rao and Kenneth A. Ross. Cahe onsious indexing for deision-support in main memory. InVLDB'99, Proeedings of 25th International Conferene on Very Large Data Bases, pages 78�89, 1999.[11℄ B. Segal and D. Arnold. Elvin has left the building: A publish/subsribe noti�ation servie withquenhing. In Proeedings of AUUG97, 1997.[12℄ T. Yan and H. Garia-Molina. The sift information dissemination system. In ACM TODS 2000, 2000.22

